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Preface

Each chapter consists of an abstract that summarizes briefly what we discuss in each chapter,
followed by the main body and is usually closed by the learning goals of the corresponding section.
The colored boxes are intended to provide an orientation for the reader:

Red boxes stand for key formulas and relations that you should definitely keep in mind:

Key formulas and relations

Green boxes summarize the content of the chapter:

Learning goals

they usually appear at the end of each section.
Thirdly, yellow boxes also give you a rough idea about possible exam content:
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Chapter 1

Classical Astronomy: Coordinates
and Time

Abstract. Introduction of the different concepts of coordinate systems used for orbital
& galactic navigation. Furthermore, problems of movement in this non-static environ-
ment as well as the correct measurements of distance and time are addressed.

Keywords: Coordinate system, coordinate transformation, apparent and physical mo-
tion, parallax, siderial time

Learning goals

* How can we orient ourselves in the cosmos? Name and explain the different coordinate
systems (Horizon, Equatorial, Galactic)

* How can we change systems or how can we pass from a coordinate system to another?
Transformations

* Do stars change position ? Yes, either apparent (refraction, aberration) or physical
(proper motion, precession, nutation) effects.

* How can we measure distances in astronomy? Parallax

¢ How do I measure time in astronomy? Explain how time is measured via siderial time,
apparent or mean time in regard to the Sun
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In this chapter, we will speak about how we can orientate ourselves in the cosmos, which ap-
pears to not feature any fix points. In doing so we will dive deeper into different coordinate systems,
distances and astronomical timescales.

1.1 Coordinate systems

1.1.1 Celestial Sphere

Celestial objects are placed on the 2D surface of an ideal sphere. The center of which coincides with
Earth’s center. They are thus visible from Earth by viewing the inside wall of the sphere. Circles
measuring the circumference of this sphere are called great circles.



There are 2 kinds of perpendicular great circles:
¢ Horizon [N,SWE]
¢ Meridian [Zenith, Nadir, N, S]

With the Zenith being placed in perpendicular direction above the observer and the Nadir being
placed in perpendicular direction below the observer. The circles as well as the observer can be seen
in Figure 1.1.1.

ZENITH

2

NADIR

Figure 1.1.1: Celestial Sphere.

EAST WEST

1.1.2 Horizon or Altitude/Azimuth system

The most straight forward approach to determine the location of an object requires only two coor-
dinates based on the observers local position and his horizon. The radial distance is not of interest
in this system. See Figure 1.1.2a.

¢ Altitude [H]: The altitude H is defined as the angle measured from the horizon to the object
along a great circle (not the meridian) passing through the Zenith. Therefore, z is the angle
from the Zenith to the object and H + z = 90°.

e Azimuth [A]: The Azimuth is defined as the angle spanning from North eastwards/ South
westwards until the great circles measuring the altitude intersects with the horizon.

The coordinates depend on the local observers latitude and longitude. It is therefore difficult to
transform the coordinates to any other observer. Secondly, the stars are constantly moving, due
to Earths rotation. Finally, the stars rise 4 minutes earlier every day, as a siderial Earth day (1
rotation around spin axis) only takes 23h56min. See Figure 1.1.3. The celestial north and south
are equivalent to Earths north and south and thus intersect with the Earth rotational spin axis.
When stars rise in the east they follow their so called trace arcs until they reach their highest point
called upper culmination (UC). Moving westwards and dipping behind Earth, they also reach an
LC. This can be seen in Figure 1.1.2Db.



STAR'S GREAT ZENITH

CIRCUM POLAR

NADIR SOUTH POLE
(a) The two coordinates Azimuth and Altitude are dis- (b) Stars move along trace arcs (green). Here they
played in regard to a reference star. reach a highest point above the horizon (UC).

Figure 1.1.2: Azimuth-Altitude system.

The Earth moves approximately 1° on its orbit around the Sun every 24h, meaning that Earth
would have to rotate 361° to face the Sun again. Far distant stars experience a much lower effect
resulting in them "rising" 4 minutes earlier relative to Earth. Therefore a siderial day is defined as
the time between two UC.

ONE SIDERIAL
DAY LATER

YESTERDAY

Figure 1.1.3: Siderial Day (360° turn) vs. Synodical Day (361° turn).

Important (Exam)

Please describe and discuss the Horizontal and the ECS coordinate systems.




1.1.3 Equatorial Coordinate System [ECS]

The ECS is based on the latitude - longitude system of Earth. Earth’s local coordinates are given
by longitude A and latitude ¢ with A = 0 for Greenwich and ¢ = 0 for the equator. Again only two
coordinates are necessary to describe a position at the sky.

¢ celestial equator: the projection of the Earth’s equator onto the celestial sphere
* hour circle: the great circle passing through the object and the North Celestial Pole (NCP)

* right ascension [a]: a is an angular distance, measured eastward along the celestial equa-
tor from the Vernal equinox to its intersection with the hour circle. Is it measured in time:
hours, minutes, seconds (HMS)

¢ declination [6]: § is an angular distance, measured positive to the north and negative to the
south along the hour circle from the celestial equator. Is it measured as an angle: degrees,
arcminutes, arcseconds (DMS)

Celestial NCP
sphere

Celestial
equator

SCP

Figure 1.1.4: Equatorial Coordinate System, Caroll & Ostlie.

The conversion is as follows: 1°=60’=3600" or 1°= 1—15 hr =4 min
which by multiplying by 15 results in: 15° = 1 hr, 15’ = 1 min, 15" = 1 sec

So whereas the horizon system uses the horizon and a great circle passing through the Zenith,
the ECS uses the actual projection of the north pole and equator onto the celestial sphere.
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Figure 1.1.5: Seasons northern hemisphere, Prof. Santangelo slides.
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Figure 1.1.6: Equinox points and ecliptic, Prof. Santangelo slides.

The ecliptic describes the plane in which the Earth orbits around the Sun. The celestial sphere
is inclined by 23°27’ which causes Earth to have seasons. During orbit we reach the point closest to
the Sun, called the Perihelion, at 1.47-10'm and our most distant point, named the Aphelion, at
1.52-101 m. Twice a year the celestial equator intersects with the ecliptic. These points are called
Vernal equinox or Autumnal equinox. The most northern excursion of the Sun along the ecliptic is
called "summer solstice", the southern most position has the name "winter solstice". As a result
of the inclination of the ecliptic with respect to the celestial equator, the declination of the Sun
changes during the year. At the June solstice, it reaches +23.5°, the most northern excursion, while
at the December solstice it reaches -23.5°, the most southern position. Ultimately the Sun is visible
for a longer period during summer.

CELEST\AL
NORTH POLE

CELESTIAL EQUATOR

CELESTIAL
SOUTH POLE

Figure 1.1.7: Siderial time and hour angle.

A further simplification uses the so called hour angle [t] which describes the angular separation
westwards (in time) from the meridian to the hour circle used to fixate the star. The hour angle
of the vernal equinox is called sidereal time 6. It is given by the right ascension (equinox to hour
circle) and hour angle (meridian to hour circle) both of the object.

O=a+t (1.1.1)



1.1.4 Galactic coordinates

Again we only need two coordinates. This time the coordinate system is centered around the Sun.
The quantities denoted with L and B are angular coordinates on the sphere, where B is the Galactic
latitude while L is the Galactic longitude.

To NGP

Star

Rotation

Galactic center

aroll & Ostlie

Figure 1.1.8: Galactic coordinates, Caroll & Ostlie

¢ Galactic latitude [B]: Counts positive towards the North up to 90° and negative in the
southern direction

¢ Galactic longitude [L]: Counts from 0° to 360° for objects deviating from the line connecting
the Sun and the galactic center

Stars along a fixed line of sight have the same L or B, which is why they can not be sepa-
rated unless a third coordinate is introduced: the distance. The galactic center has the galactic
coordinates [0°,0°].

1.2 Variations and star positions

1.2.1 Rotation of the Earth

The rotation of the Earth is not fixed around one axis in space. Effects such as Precession and
Nutation arise. Variations of the observed star positions may include effects such as Abberation,
Refraction, Parallax.

Precession

Precession denotes the change in the direction of the rotation axis of an astronomical body e.g., the
Earth. Tidal forces of bodies close to the ecliptic, i.e. Sun and Moon, create a torque L = M which
enforces Earth’s bulges towards the ecliptic plane. This causes the Earth to precess (rotation of spin
axis around precession axis). Earth’s precession period is 25770 years (Platonic year) while the NCP
makes a slow circle around the precession axis. Ultimately, the coordinates, right ascension and
the declination of a celestial body, will change. As a result, while we are closest to Polaris, the north
star (within 1°) today, Vega will be the brightest star in the north in 12000 years time while Polaris
will be 47° off axis. Further pertubation shifts include west and eastward shifts on the order off
arcseconds/year. Thus, we consider coordinates taken at a certain point in time (reference) with the
change of the coordinates added on top for a given time today.
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Figure 1.2.1: Influence of Precession on Earth’s night sky.

The epoch commonly used today for astronomical catalogs of celestial objects refers to the ob-
ject’s position at noon (UT) in Greenwich, (UK) on January 1st 2000. This reference date is called
J2000 where J stands for Julian Calendar.

New coordinates:
1) Aa=M+N-€(a)
2) A6 =N -cos(a),
where M & N depend on T, T? and T and are defined as:
M =1".2812323T +0°.00038797T% + 0°.000010172 (1.2.1)

N =0°.55675307 —0°.00011857"% —0°.0000116 7> (1.2.2)

with T = % and ¢ = current date, specified in fractions of a year (e.g. 2021,8)
Nutation

Earth’s precession nutates back and forth with period of 18.6 years due to the gravitational pertu-
bation caused by the Moon. This is due to the fact that the Moon’s orbit is inclined with respect
to the ecliptic by 5.1°, resulting in the precession of the Moon’s orbital plane. The amplitude of
nutations is small: 7-9".

ECLIPTICPOLE

>0

Figure 1.2.2: Influence of Nutation on Earth.



1.2.2 Variation of the observed star positions

Abberation

The observer sees light shifted in the direction of the observers direction of motion. The moving
frame is not equal to the rest frame.

Refraction

Refraction means the change of direction of light resulting from the influence of the atmosphere
along the line of sight. The atmospheric influence depends on its local value of humidity among
other environmental parameters. Therefore the Sun for example can even be seen, when it has
dipped below the horizon.

Proper motion

This variation means the change of the positioning of objects with respect to the static background.
The motion can be broken down into a radial component, which can measured by Doppler shift
in the spectrum and a tangential component. The tangential velocity, along the celestial sphere,
appears as a slow angular change in its equatorial coordinates.

Radial
] velocity
Objec Space
veloci
Ad Yy
r N -~ Transverse

/ ”\ velocity
Proper
Sun % :% motion

Figure 1.2.3: Proper motion of celestial objects.

Ad =vg-At (1.2.3)
AO = A—d (1.2.4)
r
do vy
=— =22 1.2.5
K dt r ( )

1.2.3 Distances: Parallax

The motion of the Earth around the Sun generates the apparent motion of a star with respect to
the very distant objects (e.g. Quasars = quasi stellar objects). The parallax is defined as the change
of a star position due to the orbit of the Earth around the Sun. Depending on the position of the
star, an ellipse, a circle (NCP) or a line (equator) will be traced in the celestial sphere during the
year.
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Figure 1.2.4: Distance parallax.

1 pc (parallax-second) corresponds to the distance of a star whose parallax is 1 arcsec for an an-

gular radius of 1 AU. With 1 pc = 3.086-10'm = 3,26 ly. The closest star to to the Sun is Proxima
Centauri at a distance of d = 1.3 pc.

1.3 Time

1.3.1 Apparent and mean sidereal time

The apparent sidereal time is determined by the position of the true vernal equinox. It is obtained
by direct observation. When doing so, precession and nutation need to be taken into account as
these incluence the position of the vernal equinox.

The mean equinox is determined by the position the vernal equinox would be if there were no
precession or nutation. The mean sidereal time is then the hour angle of the mean equinox.

0,—0m =A¥cose (1.3.1)

with € being the obliquity of the ecliptic at the instant of observation and AW being the nutation (in
longitude).

1.3.2 Solar Time

In general it is more convenient to use the alternation of day and night: defining time according
to the apparent motion of the Sun. The true (or apparent) solar time, T, based on the Sun’s hour
angle, does not flow at a constant rate. This has multiple reasons:

* The orbit of the Earth is not exactly circular, but an ellipse, which implies that the Earth’s
velocity along its orbit is not constant.

* The Sun moves along the ecliptic -not the equator- and therefore the right ascension does
not increase at a constant rate: fastest at the end of December (4 min 27 s per day), slowest
mid-September (3 min 35 s per day). A schematic illustration is given in Figure 1.3.1.

To compensate for this, a mean Sun, which moves along the celestial equator with constant angular
velocity, is invented. It makes a full rotation in one year.
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Figure 1.3.1: Illustration of Celestial Sphere including Ecliptic.

The mean solar time (Ty) is defined as the hour angle of the Sun + 12 hours. This 12 hour offset
arises from making each day start at midnight. The hour angle or the mean sun is measured from
the zenith (noon). The Equation of time (ET) is the defined as

ET=T-Ty (1.3.2)
15 L Anticipate
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Figure 1.3.2: Visual display of Equation of time.

1.3.3 Time measurement: the year

Three exemplary cases are denoted to illustrated, in order to demonstrate the deviations of time
measurements.

¢ Sidereal year: Time needed by the Sun to make one full revolution with respect to the back-
ground fixed stars. It corresponds to the true orbital period of the Earth equaling 365.25637
mean Sun days.

¢ Tropical year: Time needed by the Sun to rise at the vernal equinox (two consecutive times)
equaling 365.24219 mean Sun days.

* Gregorian year: one year in the Gregorian calendar, equaling 365.2425 = 365 + 1/4 - 3/400
mean Sun days (Gregorian calendar, 1582)

10



1.4 Additional information

1.4.1 Transformations

The transformation from equatorial to horizontal coordinates is given by:

Horizon(A,z) — Equatorial(5,?)

cosfsint =sinzsinA (14.1)
cosdcost =coszcosy +sinzsingcos A (1.4.2)
sind = coszsing —sinZ cospcos A (1.4.3)

And conversely, the inverse transformation:

Equatorial(d,t) — Horizon(4,z)

sinzsinA = cosdsint (1.4.4)
—sinzcosA =cos@sind —sin@cosd cost (1.4.5)
cosz =singsind + cosgcosdcost (1.4.6)

Where ¢ is the geographical latitude of the observation site

1.4.2 Astrometry

Satellite missions to do Astrometry (ESA):
1) Hipparcos: precision: 0,01", max. distance: 300 pc
2) GAIA: precission: 1 uas, distance: 10’s of kpc = milky way (d = 30 kpc)

1.4.3 Fun facts

1) Mass of Black hole at center of Milky way: 4-10°M
2) Cosmic microwave background fluctuations (CMB): % =107°

11



Chapter 2

Celestial mechanics

Abstract. Introduction to the Kepler laws and how they are obtained. This also leads
to the definition of orbits and multi-body systems.

Keywords: Kepler, mechanics, forces, geometry

Learning goals

* What are the Kepler laws? Learn the Kepler laws and how they can be derived from
the conversation of energy and angular momentum.

e What type of orbits do I have in Astronomy? Learn the types of orbits depending on
the mechanical energy of the system.

¢ How can we solve the multibody problem? What multibody problem means and a few
simple systems.

\ 7

The topic of the chapter is celestial mechanics, which deals with the motions of celestial ob-
jects, especially but not exclusively those of planets and stars. To describe the motion of these
objects we will use Newton’s and conservation laws. Yet, only the two-body problem could be solved
analytically. More complex problems involving more bodies (N-body problems) are usually solved
numerically and are applied in a wide variety of fields, for instance in the detection of exoplanets,
galaxies dynamic and the dynamics of clusters of galaxies. It is also worth to mention that celestial
mechanics is not only used to describe the motion of the planets, for example the known eight of
the solar system, but also those of very eccentric objects like 2013 FT28 or other Extreme Kuiper
Belt Objects that reach far beyond as what we would intuitively call our solar system.

2.1 Kepler’s laws
One of the great achievement of human thinking has been the understanding of the motion of

the planets around the Sun, which is described by the Kepler’s laws. The three Kepler’s laws,
discovered by JOHANNES KEPLER (1571 — 1630) are as follows:

First 1aw(1609)

A planet orbits the Sun in an ellipse, with the Sun at one focus of the ellipse: f; and f; are the foci.

12
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Figure 2.1.1: First and second Kepler’s law

Second law(1609)

A line connecting a planet to the Sun (Fahrstrahl’) sweeps out equal areas A; and A9 in equal
time intervals (see figure 2.1). In other words: A line r connecting sun and planet sweeps out equal
amounts of surface area in equal time:

A1-At=Ag-At (2.1.1)

Third law (1619)

The square of the orbital period P of a planet is proportional to the cube of the semi-major axis a of
its orbit.

= 50,000 ~
— [ 10,000
-
L, -
L1
£ [ 1,000 a
L]
=}
=
H 100
E
B 10 The straight line expresses
B . Kepler's Law of Periods
2 Mars
Sk _-" Earth
* Venus
< 10 100 1000 10,000
*"Mercury L L L 1 i

Square of orbital period (yr 2)

Figure 2.1.2: Third Kepler’s law

And quantitatively:
P 2

—5 = constant (2.1.2)
a

Know all three Kepler laws and apply them.

2.2 Two-body problem

2.2.1 Equation of motion

We will derive the equations of motion, where we will see that a two-body problem can effectively be
reduced to a one-body problem. This is extremely handy and eases many calculations. Afterwards
we will briefly discuss the results and learn about the types of orbits that are possible.

The force of gravity, introduced by SIR ISSAC NEWTON, is an attractive force between two
massive bodies.

13



Figure 2.2.1: Newton’s Law

Body 1 experiences a force from body 2 and vice versa (3rd law of Newton). Newton’s law of
gravity is quantitatively expressed as

- 712 F12
F21 = —Gm1m2? = —GmlmgT (2.2.1)
T2 T19

~ 7 7

F12 = Gm1m2?12 = Gmlmz%
T12 T2

where we used that 712 = #19r12 and defined 712 as the unit vector pointing from the center of body

1 to body 2 and ri9 as the absolute distance between the two centers. If we consider our sun and

Earth, we know that M, = 332.946 Mg,,;». The mass of the sun in SI units can be found in the

appendix alongside some other useful and common values in astronomy.

Let us now consider a sun S and a planet P in a two-body system.

(2.2.2)

Figure 2.2.2: Sun and a planet as a two-body system

As seen in the figure above, O denotes the origin of the coordinate system, #g(¢) and 7p(¢) the
radial vectors of the sun and the planet respectively. Thus, the vector connecting both bodies can be
obtained by7(¢) = Fp(t) — Fg(¢). The ultimate goal of this discussion is to find the solution of the two
body problem, in other words: to find r(¢) = |#(¢)| by using Newton’s law of universal gravitation.
For that we go back to the expression of the forces (2.2.2) and write down the equations of motions
like we always do by using Newton’s law. We obtain for the sun:

GMgmp(Fp(t)-7s(t))
Fp@)-Fs@®

5 5 GMgmp(Fp(t)—Fs(t)) 7

mprp=mpap = — FpD)—Fs P Z—GMsl’npr—3 (2.2.4)
We now apply a common strategy where we reduce a complex looking two-body problem to a

one-body problem by introducing relative coordinates. We can obtain the equation for the rela-

tive motion simply by multiplying the second equation by Mg and the first equation by mp and

MgFs =Mgag = (2.2.3)

14
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Figure 2.2.3: Momentum conservation

afterwards subtracting them from each other. When we now divide by Mg + mp we end up with

-

i = pd = —GMpr% (2.2.5)

where we introduced the following quantities

Msmp
=—= - 2.2.6
K Ms+mp ( )
M=Mg+mp, (2.2.7)

with M being the total mass of the system and u the so called reduced mass. All in all we have:

Relative coordinates

The coordinates:

F(2) =7F1(¢) - Fa(2) (2.2.8)
Ft)=——22 7 (2.2.9)

mi1+mg
Folt)= — 2L 7 (2.2.10)

mi+mg

and the masses: o
- e (2.2.11)
Mg +mp

M=Mg+mp (2.2.12)

Now we can solve the problem comparably easily in the coordinate system in which the origin
is in the center of mass since we have reduced it to a one dimensional problem. The planet moves
as a body of reduced mass in the field of a central mass given by the sum of the masses. Again: the
mass of the planet is much smaller than the mass of the sun.
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Let us now consider the conservation laws. First, we begin with the conservation of energy
1 1
E=-w?-GMu-=-, (2.2.13)
2 r
consisting of the kinetic and potential term. The angular momentum is also conserved, i.e.
L=uxv (2.2.14)

where we set ¥ = 7. Let us now introduce the specific angular momentum A,which is the angular
momentum per unit of mass

h= (2.2.15)

= |t~

Both the angular momentum L and the specific momentum % are orthogonal to 7 by definition, in
other words: the motion is orthogonal to L. We choose a coordinate system with the z-axis parallel
toL,ie.

L
h===2 (2.2.16)
u
We will now express the equations of motion in terms of polar coordinates. They are defined as
7= (rc9s¢) (2.2.17)
rsing
or in terms of Cartesian coordinates
x=rcos¢ (2.2.18)
y=rsin¢ (2.2.19)

We will use r to denote the distance to the origin instead of p.

p—r

y é¢

@D

@ X

Figure 2.2.4: Polar coordinates and angular momentum

By using the unit vectors

. _[—sin¢ . _(cos¢
€p= ( cos¢b ), e,= (sin¢) (2.2.20)
we can then calculate the derivatives of (2.2.17) with respect to the time t by using the chain rule
F =P8, + r(t)p(t)é (2.2.21)
7= —r®)e, +(2id+rd)éy, (2.2.22)

Therefore, the equations of motion become

mF = m(F -~ r¢?)E, + m@rd+r$)ey = —G &, (2.2.23)
r
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and the angular momentum in €, becomes
L =ré, x m(7é, + r¢és) = mripe, = mh (2.2.24)

Thus, by dividing equation(2.2.23) by m and multiplying with €., we obtain the radial equation of
motion. Together with equation (2.2.24) we have

Equation of Motion(2D)

Forg?=———r0 (2.2.25)

rg=~h (2.2.26)

The first one is the radial motion equation, the second is the azimutal motion equation. All
in all, we have effectively reduced the complex, 3-dimensional equations (2.2.3) to a handy, 2-
dimensional set of equations.

2.2.2 Discussion of Equation of Motion & conserved quantities

Here we will see that we can obtain the law of areas (2nd Kepler law). A line connecting a planet
to the sun sweeps over equal areas in equal time intervals. This can be seen by considering the
following geometry

O

Figure 2.2.5: Geometry for derivation
The differential (very small) area that is swept is given by

1
ds = Elf x dFl, (2.2.27)

which is illustrated in the figure above: since |F x d7| would yield the total square and we are
interested in the triangle, the factor of 1/2 is introduced. If we divide by d¢, we get,

o1 .
S = EIF xdV]| (2.2.28)
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Using the definition of h in (2.2.15) and (2.2.16), this becomes
1
S = §h (2.2.29)

This is exactly the second law since the angular momentum is conserved; therefore, h is constant
and the swept area is the same for equal time intervals. Note that the area is also independent of
the mass of either body, which is quite remarkable.

2.2.3 Form of orbits

First, we will consider the energy conservation, which leads us to the effective potential and the so
called radial equation of motion. From there, we can predict which forms the orbits can have. Let
us now consider the conservation of energy. Gravity is a conservative force and therefore the total
mechanical energy E of the orbiting body is conserved.

E =E, ¢+ Eyin = constant (2.2.30)
where E, ; is the gravitational potential energy of mass m in the field of M, i.e.

M
Epg=-GT—. (2.2.31)
r

On the other hand, the kinetic energy is given by

LZ
2mr2’

1 . .
Egin = —mlr% = %(r‘2 +r2?) = %r‘z + (2.2.32)

2
The kinetic energy is divided in two parts. One originates from the movement along the radius and
the other one is associated with the tangential, or azimuthal motion. This part depends on r but
neither on the angle ¢, nor on the velocity v.

dial _ 1 .2
Egt=5r (2.2.33)

2

tangential _ L
L (2.2.34)

Since it depends only on r, the tangential component can be included in the potential energy ob-
taining an effective potential:
Mm L?

p 22 (2.2.35)

Ver=Ep" = -G

Let us now introduce the conservation of angular momentum in the radial motion equation. We
introduce the effective potential which includes the angular momentum expressed in terms of h
from (2.2.16) )
K h
Vert(r) = —— + — (2.2.36)
r 2r2

where K =GM.

Write down and explain the effective potential, explain all the terms and draw the plot as
function of the mechanical energy € = %

Now we want to rewrite the equations of motion(2.2.25)into a equation for the effective poten-
tial. For that we express (2.2.25) also in terms of h and get

K h?

18



If we multiply this by the velocity v and integrate over the time dt, latter equation reads

K h?
ffi‘+f—2i“dt—f—3f“dt=0 (2.2.38)

r r
@frdr+f —dr— f —dr=0 (2.2.39)
f”d” K. Ry (2.2.40)

r  2r2

1., K A 1,

©2r +frdr+—7+2—2—§r (2.2.41)

When we now use that F = m#m,identify the potential energy as E,; = — [ Fdr and introduce
the quantity of the specific energy of a planet as ¢ = %, then we obtain

1 K h?
le (2.2.42)
2 r  2r2

By using the expression of the effective potential, we obtain
72+ 2Vegrlr) = 2¢ (2.2.43)

This is the radial equation. It turns out that the effective potential contains a lot of information
about the shape of an orbit. As seen in the figure below, for small distances r, the repulsive cen-
trifugal force dominates.

Vesr(®)

Figure 2.2.6: Effective Potential

For the value V¢ = €0, the planet orbits the star in a bound and circular orbit. When, Vqg = €1,
, then the orbit is also bound, but in a elliptical. When reaching eg, the trajectory is marginally
bound and describes a parabola, while for €3 it is unbound hyperbola. In summary:

Vett (Un)bound Shape
€0 Bound Circular
€1 Bound Elliptical
€2 marginally bound parabolic
€3 unbound hyperbolic

Table 2.1: Orbits

Let us take a closer look onto these orbits. When writing 7 in a rather unconventional way
dr d¢

= o dt (2.2.44)
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we can rewrite equation(2.2.43) to

2K h?
P-4 h—2 =2¢ (2.2.45)
r r
@(drd(p)21_2K+1_26 (2.2.46)
dp dt) h2 h2r r2  h2 -
By defining u = %, we see from the chain rule that
1 1
dr __.d1__1ldu (2.2.47)
do dor u?2do
Also from equation (2.2.24), we see
1d¢
h=——~ 2.2.48
u? dt ( )

Let us now plug the previous two equations (2.2.47) and (2.2.48) into (2.2.46) to obtain the result

du\? , Ku 2
—| tu"-2—F=—. 2.2.49
(@) + 25 =5 (2249
By derivating with respect to ¢ again, this becomes due to chain rule
du K (2.2.50)
u=— 2.
d¢? h2

This has exactly the form of an inhomogeneous harmonic oscillator. One family of solutions is

P

T 1+ecos(¢p— o)’ 2250

which is the equation of an ellipse with p denoting the is the semi-latus rectum and e denoting the
eccentricity of 0 < e < 1. For e > 0,this corresponds to the case of Vg = €1 from Table 1. The case
e =0 yields circular orbits. Rearranging previous equations shows

hZ
P=73 =a(l-e?) (2.2.52)

, which is exactly Kepler’s first law, i.e. all planets move on ellipses. Another solutions of (2.2.50) is

2d

P T eos @) (2.2.53)

which describes a parabola where d is the distance of the closest approach to the parabola’s focus.
The third possible solution is given by,

ae?-1)

r= m, (2254)

a hyperbola. It is particularly striking that we obtained all predicted cases from earlier just by
solving the radial equation analytically. What is also quite interesting is that all solutions are conic
sections.

Conic sections are the borders of a plane that intersects a symmetric double cone. In figure
2.2.6, the first image shows a parabola, the second one an elliptical (or even circular) intersection
and the third illustration depicts a hyperbola.

20



22

Figure 2.2.7: Conic Sections
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Figure 2.2.8: Geometry

2.2.4 Geometry

Let us take a moment to understand the geometry of the Kepler problem with which we are dealing
with.

In the figure 2.2.7 , we can see that F is the focus point of the ellipse, i.e. where the sun is
located. P is the planet that moves around the sun; r denotes the distance between both bodies,
a is the semimajor axis while b stands for the semiminor axis, thus a = b = 0, where the equality
holds in the case of a circle. Another characteristic quantity is the eccentricity which we already
encountered in the previous chapter. It is defined by

2
e:( :_) _ (2.2.55)

The perihelion ¢ = a(1 - e) is the closest point to the sun, the aphelion @ = a(1 + e) on the other
hand is the most distant point to it. The "True Anomaly" ¢ denotes the angle between the perihelion
and the planet and the "Eccentric Anomaly" E' stands for the angle between the perihelion and the
planet from the center of the ellipse. Note that we named the eccentric anomaly E " here to avoid
confusion with the energy E.

The energy and the angular momentum in this geometry should naturally lead us back to at
least one of Kepler’s laws. Since at the perihelion r, and aphelion r, the velocity is orthogonal to
the position vector: V L7, the conservation of angular momentum and the conservation of energy
yield

L=puixp=pr,Vy,=ur,V, (2.2.56)
E=tpwr K Ly K (2.2.57)
~ ot rp_ZHa ra o
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where the subscripts denote the quantities at the perihelion or aphelion. Therefore, get by using
rp=a(l—e)and r, =a(l+e), we get:

L% = 12rpra VoV, = p2a®(1- )V, V,. (2.2.58)

For bound orbits, there is a balance between gravitational force and centrifugal force, i.e. for ellipses

the velocities must fulfill*
GM [1+
V”:‘/T‘/l—i (2.2.59)
GM [1-
Va=\/7,/1+z (2.2.60)

Combining these with equations (2.2.57) and (2.2.58), we obtain the important relations

L=puvVGMa(l-e2) (2.2.61)

and oM
E=-—2HF (2.2.62)
2a

Integrating the expression for the area of the ellipse from equation (2.2.29) leads us to

.1
S=Zh (2.2.63)
2
P P h
@f Sdt:f —dt (2.2.64)
0 0o 2
h
o tab = EP’ (2.2.65)

where we used that the area of am ellipse is given by S = mab. Together with the fundamental
relation for ellipses

b=aV1-e2 (2.2.66)

we can combine the relations (2.2.61), (2.2.65) and (2.2.66) to obtain Kepler’s third law

472q3
P?= 2.2.67
GM ( )

that may be more familiar in the form that we saw earlier:
P2
—3 = constant (2.2.68)
a

The velocities to reach certain orbits, for instance when a test objects starts from the earth, can
then easily be calculated by Kepler’s third law. For a circular orbit, the velocity

47[2R3 Gm
P2= E =/ = 2.2.69
GmE ®u RE ( )

where Rp is the radius of the earth. For a parabolic velocity, the gravitational potential on earth’s
surface must be equal to the kinetic energy that is needed to escape, i.e.

G G
mE:>U2=2 mEZ\/évl.

2.2.70
Rz Rz ( )

1 2
52"

LFor a derivation of these velocities see e.g. https://www.sternfreundemuenster.de/pdf /peraph497.pdf
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This can be explained by the fact that parabolic orbits are the energetic lowest states of unbound
trajectories (see Table 1). In other words, it is the speed needed to "break free" from the gravita-
tional attraction of the earth.At any position the orbiting body has the "escape velocity" for that
position. It is remarkable that the escape velocity, or parabolic velocity is irrespective of which
direction the test particle is moving in. For an elliptical orbit, the test particle needs a velocity vs
anywhere in

v1 <vg <vsg, (2.2.71)

while for a hyperbola it has to satisfy
v >vs. (2.2.72)

2.2.5 Kepler Equation
Let us go back to the radial equation (2.2.42), reading

1 K h?
_,"2__+ _

— = 2.2.73
2 r o 2r2 ¢ ( )

which we can rewrite be defining A =2¢, B=K, C = —h? as

PP=A="—+—. (2.2.74)
r r

Let us now separate the variables dr and dt¢ and integrate

r t ,
fd—rz dt (2.2.75)

We substitute, /
r=a(l—ecoskE ), (2.2.76)

where E' is again the eccentric anomaly (see previous chapter) and also

__B (2.2.77)
a= A .
1
AC\?

Carrying out the integral (2.2.75) with these substitutions, which we will not do here since it is not
very insightful, and choosing that at ¢ = ¢g the planet is at the perihelion rg =7, yields the Kepler
equation:

Kepler Equation

2 / /
M= Fﬂ(t —to)=E —esinE (2.2.79)

where M is the mean anomaly, E' is the eccentric anomaly, P is the period and e is the
eccentricity.

For E' =0 the planet is at the perihelion and for E =7 at the aphelion respectively. Kepler’s
equation embodies the geometric properties of the orbit of a body subject to a central force. It is
a transcendental equation. We cannot solve it for E algebraically. Numerical analysis and series
expansions are required to evaluate E'. It can be shown that

9_ l+e E;"
tan(z)— 1_etan(2), (2.2.80)

while the distance follows equation (2.2.51).
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2.2.6 Orbital Elements

We are closing this subsection with some remarks on orbital elements. These are just a set of
parameters that are required to uniquely identify a specific orbitwhich follows Kepler’s laws. One
uses the following quantities: 2 orbit elements a, e (semimajor axis, eccentricity), 3 angles (they
fix the orientation of the orbits) and 1 time origin, set it for example at the time where the planet
passes the perihelion. With these six parameters, we are able to describe the planet’s position
uniquely.

Celestial body

True anomaly

&,

Longitude of ascending node

Argument of pgriapsis

('Y‘l

Reference
direction

Plane
of refe,.e”Ce
Inclination
63

Ascending node

Figure 2.2.9: Orbital elements

Let us briefly mention every quantity: two elements describe the shape of the orbit (ellipse),
three define the spatial orientation of the orbit and one is the time:

1. Eccentricity e: Shape of the ellipse - how much does it vary from a circle?

2. Semimajor axis a: the sum of the periapsis and apoapsis distances divided by two (see figure
2.2.7).

3. Inclination i: vertical tilt of the ellipse with respect to the reference plane

4. Argument of periapsis w: Defines where the low point, perigee, of the orbit is with respect to
the surface of the central body.

5. True Anomaly v (earlier we called it ¢): defines the position of the orbiting body along the
ellipse at a specific time

6. Time T'»: The point in time where the planet passes the perihelion

With these six parameters we can uniquely define the location 7 and its velocity 7. On the other
hand, by observing these quantities, we can determine the trajectory. Observing these quantities is
often rather difficult because an observer on earth is only able to measure two angles which define
the position of the celestial body on the hemisphere in the night sky. In fact, there are certain
methods to compensate this by measuring the position several times, which led to a huge success
in 1801 where astronomers could relocate Ceres using this method. The current orbital parameters
of all elements in the solar system can be found at on website of NASA (link).

2.3 N-body problem

After we have treated the two-body problem in the previous chapter, we will now move on to a more
complex problem involving more objects. In the simple case we saw that the equations of motion
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for the sun and the planet given by (2.2.3) and (2.2.4). After introducing relative coordinates, we
ended up with

-

YF = pd = —GMur—’;,,, (2.3.1)

where u = I&JS Sfrlnpp is again the reduced mass and M = Mg + m, the total mass. For, N > 2, the

N-body problem does not have an exact analytical solution. Only particular cases have been solved,
for example three masses on a equilateral triangle, three masses on a line rotating on a common
center of mass etc. (link). As an example for such a more complex system, we look at the solar
system with its eight planets. For each planet i, we need to take into account the gravitational
attraction of the sun and of the other planets with masses m; and positions 7;:

- F_;

Fi=—GMg o+ =L (2.3.2)
731> m;

Fi=- Y GM_“L (2.3.3)
j=Lizj |7l

where i €[1,8] and 7; j =7; — ;. . In addition, we need to take into account the equation of motion
of the sun. As we said these equations can only be solved numerically, which is obvious just by
bearing the number of terms in mind that appear in each equation. The approach that is usually
chosen is the one that uses perturbations, meaning that the main solution is the ellipse which is
perturbed by the other planets. For example, the eccentricity of the earth’s orbit is influenced by
the force of the other planets. Today we end up with a result of e = 0.0167.

Let us not briefly examine on a three body problem. A key insight here are the equipotential
lines. These are lines on which the gravitational potential is constant. We look at a special case of
this scenario where the equipotential lines of a three masses that satisfy the condition

mg<<mi,may. (2.3.4)

A third mass much smaller than the other two will feel the force

F3=-Gmg|mi——— 3 2= =3 (2.3.5)
[Fg — 71l |Fg —Fal

If the effect of the third mass is negligible, the other two masses will follow Keplerian orbits
around the center of mass, with a certain period and frequency. In the most simple cases these will
be circles. We can then choose a rotating reference coordinate system centered around the center
of mass and rotating with frequency w. In this system, the position vectors of the two main masses
are invariant and ms moves in the so called Roche potential

A 1 1 1,
eff = — mi—= = mo— = - —ws
|Fg —F113 [Fg—Fal3) 2

(2.3.6)

where the term %ws2 comes from centrifugal forces as we have chosen a rotating coordinate system.

Then s is the distance of the third mass from the rotation axis. Equipotential lines of the effective
potential which are generated by two masses as seen in the the rotating coordinate system centered
in the centre of mass are illustrated in the following figure:

Here, CM denotes the center of mass. What is interesting is that there are five points, the
Lagrange points L1, L2, L3, L4 and L5, where there is local equilibrium. L1, L2, L3 are unstable,
while L4 and L5 yield stable positions. They are especially useful for telescopes as they remain
in a stable position relative to the sun and earth over a long period of time. The James Webb
Telscope (JWT) will be set up in one of the Lagrangian points. When looking closely at Figure 2.12,
one can see two closed lines that look like droplets. These are the Roche lobes of both masses. If
both are stars for example,every mass that leaves the Roche lobe of one star, for example the less
massive one, it will be accreted by the more massive star and will be transferred to it through the
Lagrangian point L1 between them. In the case of a neutron star and a massive star this leads
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Figure 2.3.1: Roche potential in a rotating coordinate system

Figure 2.3.2: Gravity in a close binary system

to a spin up of the neutron star and it becomes what we call a pulsar. We will not look at this
overflow quantitatively. First we start by considering gravity in a close binary system. We define
the variables as shown in Figure 2.13. Let us choose a reference system which is corotating with
the center of mass at the origin, also called the barycenter.

From Keplerian mechanics we know that

erl =M27‘2 (2.3.7)

ri+re=a, (2.3.8)

with all variables like in figure 2.3.2 If we consider the two stars as point masses of infinitesimal
size in the x-y-plane we obtain the angular velocity

w="2=2 2.3.9)
ry rg
If we look at the corotating frame with
Fcentrifugal :Fgrav (2.3.10)
M
o mro®=G=" (2.3.11)
r

@wzwgggggg, (2.3.12)
r
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we can combine equation 2.3.9 and equation 2.3.12,

wo b2 G(M1+ M)

. e (2.3.13)

if we assume a stable corotation of system m at a distance r = @ away from the barycenter. Instead
of forces we can use the potentials ¢ as

F=-v¢ (2.3.14)
holds in general. Hence by defining the centrifugal potential ¢, and the gravitational potential ¢,

1
pe = —5m(@ x 7)? (2.3.15)
M1m Mzm)
=-G + 2.3.16
Y5 ( S1 Ss ( )
we receive as the effective potential, also known as the Roche potential

GM GM. 1
PR =~ = Tl (@ X P (2.3.17)

[F=7F1l [F=F1l 2

This is the effective potential experienced by a particle having mass m at a distance r = |F| away
from the barycenter of the binary system. If we want to find the stable points, we look for curves
with

¢(¥) = constant (2.3.18)

This can again be seen in figure 2.3.1 The Lagrangian points L1, L2, L3, L4 and L5 indicate po-

sitions where all gravitational forces nullify each other: a free force body will stay at this position
forever.

DG, + Mol
T
_____:jh
1

Figure 2.3.3: Potential lines of ¢ are shown as solid lines

The particle bound to one of the stars if its kinetic energy E satisfies

E < ¢per(L1). (2.3.19)

On the other hand, it is not bound to stars but to the binary itself when
Petr(L2) > E > ¢egr(L1), (2.3.20)
loosely speaking it is just bound to the center of mass of M; and Ms. Note that gas when spilling

over will dissipate energy by compression. The gas looses energy and goes on a bound orbit around
the new central star.
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Chapter 3

Astronomical Instruments

Abstract. In this chapter, we introduce the techniques and instruments of astronomi-
cal observations. In particular, we will focus on Radio, Optical and X-ray telescopes. We
will also introduce instruments and observatories of astroparticle physics.

Keywords: light, electromagnetism, optical, telescopes

Learning goals

* What are the fundamental quantities of light that we measure?

* What is the electromagnetic spectrum? Describe the energies and wavelengths of
different ranges.

¢ What are the basics of optical light detection?
¢ What is angular resolution, what is energy resolution?

¢ How do optical telescopes work, and which are the current and future optical tele-
scopes?

¢ How do X-ray telescopes work, and which are the current and future X-ray telescopes?

\ J

In general, light features two different characteristics. It can be either be seen as a wave or
as a particle. As particles, photons are messengers which give an insight into the universe. Other
messengers are cosmic rays (charged particles), neutrinos or even gravitational waves.

The energy of light can be expressed with the following relations

A==, E=hv, (3.0.1)

where A is the wavelength, c is the speed of light, v is the frequency and % is Planck’s constant.
The spectrum of the sun for example is close to that of a black body at 7' = 5780 K. This corresponds
to a peak intensity of 1.5eV. The human eye is most sensitive at 2-3 eV, which is likely a result
of evolution. The spectrum generally ranges from 107°eV to 10° eV, however we have already
discovered particles with energies as extreme as 1012 eV or even higher. Table 3.1 shows the ranges
and properties of the electromagnetic spectrum, whereas table 3.2 shows the SI prefixes that are
commonly used in high energy astrophysics.
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Region AMA) A (cm) Frequency (Hz) E (eV)
Radio > 10° > 10 <3x10° <107°
Microwave 102 — 108 10-0.01 3x10°-3x1012 1075 -0.01

IR 10% — 7000 0.01-7x107° 3x1012-4.3x10M" 0.01-1.5
visible 7000-4000 7x1075-4x107° 4.3x104-75x101* 1.5-3
Uv 4000-10 4x107°-1077 7.5x 101 -3 x 1017 3-10°
X-Rays 10-0.1 1077 -107° 3x1017-3x 10" 103 -10°
Gamma Rays <0.1 <10-9 >3 x 1019 > 10°

Table 3.1: Ranges and characteristics of the electromagnetic spectrum.

Prefix name Prefix symbol Energy
kilo k keV 2 10%eV
mega M MeV 2 10%eV
giga G GeV 2 10%eV
tera T TeV = 10%2eV
peta P PeV 2 10%eV
exa E EeV 2 108eV
zetta Z ZeV = 10%leV
yotta Y YeV 2 10%4eV

Table 3.2: SI prefixes commonly used for photon energies.

3.1 Observation on Earth

Radiation is absorbed in Earth’s atmosphere depending on its frequency and on the altitude, as
illustrated in the sketch in Figure 3.1.1a. Radio [10° Hz, 101! Hz] and optical [400THz, 800 THz]
frequencies pass the atmosphere almost unhindered, whereas anything in-between or with shorter
wavelength is absorbed almost completely. This is why generally any observation tool that works
in the range above the optical one is space based. The only exception is extremely high energy
radiation as these particles create showers of photons and electrons which rain down on to earth
and can thus be detected.
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Figure 3.1.1: Electromagnetic waves and the atmosphere.
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3.1.1 Role of Earth’s atmosphere

The high-energy gamma-rays, X-rays, and UV light do not pass through the upper atmosphere since
they are absorbed. Visible light can be observed with some distortion from the atmosphere, whereas
most of the infrared light is absorbed by water vapor and other gases present in the atmosphere.
Radio waves are observable from the earth, as they are not disturbed by atmospheric gases but
long-wavelength radio waves are blocked by the charged particles in the ionosphere. Figure 3.1.1b
visualises the transparency of the atmosphere as a function of wavelength.

3.2 Optical Telescopes

In this chapter we introduce the techniques and instruments of astronomical observations. In par-
ticular, we will focus on radio, optical and X-ray telescopes. We will also introduce instruments and
observatories to detect astroparticle physics. We distinguish two types of telescopes: the refractor
and the reflector telescopes.

a) Refractor telescopes

A refractor (lens telescope) uses a collective lens. In physics, refraction is the change in direction
of a wave passing from one medium to another. For light, refraction follows Snell’s law, which states
that, for a given pair of media, the ratio of the sines of the angle of incidence @ and angle of refrac-
tion B is equal to the ratio of phase velocities Z—; in the two media, or equivalently, to the indices of
refraction Z—; of the two media.

n1-sin(@) = ng-sin(f) , n=— 3.2.1)

Figure 3.2.1: Refraction of light through a thick slab.

To simplify the following considerations, we assume parallel rays. This assumption is justified,
as we think of the source to be very far away.

i
\

Figure 3.2.2: (a) Parallel rays converging through a convex lens. (b) Parallel rays diverging through
a concave lens.

Now we can use the lensmaker’s equation

11
1 :(m).(___) (3.2.2)
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1 1 1
T_2_Z (3.2.3)
f g b

with R and Ry being the curvature radii of the lens.

"V v
E I

(a) ()

Figure 3.2.3: Two radii of focus of (a) convex lens (b) concave lens.

Both concave (diverge) and convex (converge) lenses have 2 foci. In the case of 81 = 05 we talk of

reflection. Here, f denotes the focal length, which is independent of the wavelength 1. The quantity
F stands for the position of the focal plane.

Focal Plane \/
!
NG

Optical Axis f:\_\_ﬁ
| \// :
/ | |\ {
e L

f f

Figure 3.2.4: Focal plane of mirrors.

Sometimes two sources are very close together, which makes it hard to separate them. The

sources are then called diffuse (as opposed to point sources). The two sources then differ by the
impinging angle 6. The difference of focus along the focal plane is then given by

y=f-tan(@)=f-0 (3.2.4)

Figure 3.2.5: The plate scale relation.

This is also explains why refractors are so long, as y is proportional to /. The angular separation
is
do 1

— == (3.2.5)
dy f

and allows for the minimum angular resolution to be reconstructed. Two well known space based
telescopes are:
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e ROSAT (DLR): Achieves a minimum angular resolution of 5"

e CHANDRA (NASA): Achieves a minimum angular resolution of 0.5"

The smaller the aperture diameter (D), the less light can be collected by lens making it harder to
see or resolve the images. The limiting factor is the diffraction at the lens edge. This results in
many secondary maxima or so-called airy discs:

A
i =m—= 3.2.6
sina mD ( )

where m is the value for the according maxima or minima, see Table 3.3.

State and order value m
Minima 1 1.22
Maxima 1 1.635

Table 3.3: First two entries of order values for maxima or minima when calculating the diffraction
angle.

(a) Single source. (b) Two sources which are just resolved.

Figure 3.2.6: Diffraction patterns of (a) a single source and (b) two sources which are just resolved.

From this relation, the criterion for being able to distinguish between two sources can be de-
fined. The Rayleigh criterion states that: The first maxima of the second source needs to lie
within in the first minima of the first source. Following equation 3.2.6, a radio telescope for exam-
ple has worse resolution than an optical telescope of the same size because Aragio > Aoptical-

A
tan apin = 1.225. (3.2.7)

Calculate the minimal angle or distance that two sources in the sky need to have in order
to be resolved.

Instrument D A Qmin
Eyes 6mm 5500A 0.4’
Small Telescope 13.8cm  5500A 1.0
Hubble ST 25m 4000 A 0.04”
Keck Hawaii 10 m 4000 A  0.01”
Effelsberg Radio Telescope | 100 m 21 cm 9

Table 3.4: Angular resolution of different instruments.
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A radio telescope will have resolution in the order of arcmin, whereas the optical achieves a
resolution in the magnitude of arcsec. The limit achievable is constrained by the atmosphere down
to a few arcsec. To help out with this, we use adaptive optics. When using interferometry radio
telescopes, one can achieve values as low as 0.001" since D in 3.2.7 is very large. This does not work
for X-rays though, as it is hard to collect particles with such small wavelengths with the needed
high precision. Furthermore, the limit from earlier was a theoretical one, but practically it is much
harder to collect X-rays (systemic effects). The flux (here ¢J) is proportional to the surface of the
aperture. This again is also proportional to the inverse of the focal length. With the focal ratio of f
over D, J is given by

D 2
J o (F) . (3.2.8)
The typical angular resolution of some telescopes and energy ranges is shown in Table 3.5.

Telescope Angular resolution
Radio 0.2°
Array Radio telescope 0.17- 0.001”
Microwaves (WMAP) 0.2°- 0.3°
X-ray (Chandra) 0.5”
Hard X-ray 12”7
GeV (Fermi) 0.2°- 3°
Hess (TeV) 0.1°

Table 3.5: Angular resolution in different wavelength bands.

Counts

Energy Resolution
SE FWHM

Energy

Figure 3.2.7: Energy resolution and FWHM of a pulse height distribution.

As an example, XMM-NEWTON has worse angular resolution than CHANDRA, however the
illumination (flux) is much better. It is therefore able to gather spectra from much fainter stars and
therefore to provide a much better energy distribution (SED). This is measured by

E
AE
where AE is the full-width-half-maximum (FWHM), which is a known quantity from the introduc-

tory courses. The medium energy resolution is anything from 50 to 500, whereas high is anything
above 1000. The magnification by a refractor geometry is given by

(3.2.9)

v = [lenst _ Qlens1 (3.2.10)
flens2  @lens2

There is an important lens error that limits the resolution, called the Chromatic aberration.
Different focal lengths are produced by different wavelengths. This is especially problematic for
refractors as their resolution depends on A. In this case, a so-called achromat can fix this error
up to a certain threshold. The achromat concentrates all wavelengths back to one focus point.
Another, more general problem with refractors is, that due to their size, the lenses as well as the
whole construction is extremely heavy and difficult to manufacture.
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3.2.1 Illumination

The amount of light energy per second focused onto a unit area of the resolved image is called
Illumination J, which is proportional to the surface of the aperture. It describes the light-gathering
power of the telescope.

D2
Jo

4

The dimension of the image is proportional to f2, therefore the illumination must be inversely
proportional to f2

J X ﬁ
Combining above equations, we arrive at the following:

1 D2
Jx —

7 = ﬁ (3.2.11)

where F is the focal ratio.
b) Reflector telescopes

Contrary to the previously discussed setup, a reflector consists of a multi-mirror construction. In
general, the primary mirror will be a paraboloid (concave) which concentrates the light on to a sec-
ondary mirror to extend the focal length. The main layouts are shown in Figure 3.2.8, they are

¢ Newton: The second mirror is plane parallel
¢ Cassegrain: Secondary is hyperboloid; longer focal length, compact construction
¢ Riittchey-Chréttiien: both hyperboloid. Today’s standard for large telescopes

¢ Schmidt-Cassegrain: Aspherical collector lens. Today’s amateur telescope.

refractor Maksutov
eyepiece catadioptric

mirrored
inner surface

corrector plate—_
objective lens R

" secondary Cassegrain

bl " _—mirror (flat;
g ( ) reflector

secondary mirror
reflector

”" /" (convex ellipsoidal)

objective mirror
(spherical)

\
g
eyepiece

. &
eyepiece diameter of objective
focal ratio = ———————

objective mirror objective mirror focal length
(parabolic) (parabolic)

Figure 3.2.8: Geometries of different telescope types.

Describe different telescope set-ups (Newton, Cassegrain, Schmidt-Cassegrain, etc.).
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3.3 Telescope mounting

It is necessary for the telescope to be pointed at a fixed region of the sky for an extended period
of time so that it can collect enough photons to produce a high-resolution, deep-sky image of faint
objects. There are two basic types of telescope mounts.

¢ Altitude-azimuth mount An alt-az mount moves in two axes, the vertical (altitude) and
horizontal (azimuth) to the horizon. One of the advantages is the mechanical simplicity of
the mount design and light construction. This type of mounting is mostly used in modern
telescopes, driven by a computer.

¢ Equatorial mount The equatorial (parallactic) mount accounts for the Earth’s rotation. It
has a polar axis that is aligned to the north celestial pole (NCP), which allows it to swing in
an east-west direction. A second axis perpendicular to this allows the telescope to swing in a
north-south direction. An advantage of this type of mounting is that the motion of the stars
has to be compensated around the polar axis only.

Here there are problems with mechanical stability due to weight and temperature dependency.
Solutions are thick mirrors, adaptive optics and active optics (change of mirror shape in real time
with actuators). This is also achieved by mosaic mirror (many little mirrors), see e.g. the future
30m telescope (USA) or the ELT (ESA) in Figure 3.3.1.

(a) The Thirty Meter Telescope (b) ELT - Extremely Large Telescope.

Figure 3.3.1: Examples of modern telescopes.

With that being said, we want to close the discussion on types of telescopes and want to briefly
explain two different concepts dealing with corrections. One concept is the adaptive optics, which
we have used this notion several times already.

Lense errors and spectrographs

The atmosphere causes problems such as seeing where the planar wavefront interacts with the
particles in the atmosphere due to turbulences. Therefore, the light path is changed (and with that
the position of star changes respectively). There are two methods to correct for this effect:

¢ speckle interferometry: Applied after the data is collected, it is part of the ata analysis.
In order to correct for the blur, the image is taken in extremely short time steps (0.001s.).
This way the pictures can be processed afterwards and the original source is filtered out. But
the short time leads to the obstacle that only very bright sources can be monitored, as faint
sources will not emit enough flux for the telescope to capture during such period.
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¢ adaptive optics: This is the correction of wavefront by changing the surface of the mirror
in order to compensate the wavefront distortion. Corrections are made every 0.01s. The
feedback is given to a computer who performs real time calculations and applies adjustments.

The second method however requires a bright star with known coordinates to calibrate the system.
With no star in the apparent window one can create a laser guide star. The light is reflected from
the atmosphere, so that the computer can calculate the corrections.

Last, but not least, we mention the spectrograph. A spectral decomposition can be performed
with a prisma or grating. For a prisma the refraction index is antiproportional to A2. Diffraction
gratings are often used as dispersive elements, transmission-gratings or more often as reflection-
gratings. These setups achieve interference by

d(sin(a) —sin(f)) = mA (3.3.1)

where d is the grating index and m is the order. An advantage of reflective gratings is the con-
centration of light in higher orders of m and higher efficiency for larger angular dispersion. The

resolution of these is given by

R= % =m-N (3.3.2)

Echelle-gratings are groove shaped and are optimized for the use at high incidence angles and
therefore in high diffraction orders. A few known telescopes using spectrographs are:

e HUBBLE SPACE TELESCOPE (HST)

e VLTI

3.4 X-ray astronomy

As we have previously seen, electromagnetic radiation with high energy does not pass the atmo-
sphere. An example of high energy radiation is X-ray.
The first satellite mission took place in 1962 with a Geiger-Miiller counter. The flux count was
much higher than expected. It exceeded the optical flux by a factor of about 100. The first X-ray
source was SCO-X1 (Scorpio, X-ray first source). While doing so, a diffuse X-ray background was
also measured.
A major problem with X-ray astronomy is the reflection of X-rays, which is zero (refractive index
=~ 1). This means that normal telescope lenses can not be used. The solution is given by collimators.
These channel/constrain photons by entering into a certain tunnel. Basically, these tunnels focus
the rays. Therefore, the detector can be smaller while having a higher intensity as more particles
are being collected. This results in the detection of fainter objects and less background noise. It
turns out that the X-rays can be reflected if they impinge on the mirrors with tiny grazing angles.
These angles are given by

N

Ox — 3.4.1
< & ( )
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Figure 3.4.1: Wolter-I telescope configuration.

and are of the order of 1° to 2°. This setup is called a Wolters telescope. Although there are 3
types, the W1 configuration is of main interest here. Reading off from the above relation for the
angle, higher energy requires smaller angles. This is a problem since we can not choose f as big as
we want due to the impossibility to launch arbitrarily large rockets. Hence, we need to concentrate
on p or equivalently n, which is defined as as

Z
n=y1-p= 1_n Te.

A, (3.4.2)
b2

that depends on the atomic number Z. This is why dense material such as Gold or Iridium are
commonly used. In the W1 setup, the particles are reflected twice. The first mirror is usually
a paraboloid mirror while the second one is hyperboloid. The aperture of the mirror is therefore
given by

A=27nR-1-sinf (3.4.3)

with 1 = length of paraboloid mirror. The geometric collective area is then

A=n(R%2, _—-R2 ) (3.4.4)

outer inner’*

Explain the basic principles of X-ray telescope and describe W1 set-up.

To increase the effective area, the mirrors can be nested, i.e. many shells can be aligned coaxi-
ally. CHANDRA for example has 4 of such shells that can be seen in Figure 3.4.2a. It is a very stable
system with thick and heavy mirrors, that is why using more than 4 shells is difficult.

Note that 4 "perfect” (thick) mirrors results in a high resolution. XMM-NEWTON on the other
hand has 58 shells (see Figure 3.4.2b), but they are thin mirrors and therefore not as stable. Also,
achieving perfect alignment is more difficult as the weight of the mirrors bends them slightly.
Thus, the spatial resolution is worse but the collecting area is larger, so spectral analysis of very
faint objects is possible. This can be seen as a trade off and a rule of thumb is: High resolution and
low collecting area or visa versa.

Telescope High spatial resolution Large effective area  Spectral analysis of
for imaging faint sources
CHANDRA yes no no
XMM-NEWTON no yes yes

Table 3.6: Trade off between imaging and spectral analysis capabilities at the example of the CHAN-
DRA and XMM-NEWTON space telescopes.
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(a) The 4 nested thick mirrors of the CHANDRA tele- (b) The 58 nested mirrors of the XMM-NEWTON tele-
scope. scope.

Figure 3.4.2: Examples of telescopes using the Wolter type I configuration.

Future satellites like ATHENA are expected to combine the best of both worlds. The follow up
from ROSAT, namely EROSITA, also features multi mirror optics (7 telescopes, each with 54 shells)
and is designed to perform spectral analysis. The resolution is 16", which is worse than the one of
CHANDRA. However, it has the best sensitivity ever and is supposed to map the whole sky finding
billions of sources.

Before closing X-ray instruments and moving to the radio spectrum, we look at CCDs (Charge
Coupled Devices). This principle is based on the photo effect in silicon crystals. Electrons are
collected by electrodes marking the counts. This allows for high quantum efficiency. Illumination
results in a cloud of electrons and the charge is collectively moved through the system by falling
potential as the electrons migrate towards the anode. In general, incident radiation energy of ~ 1eV
equals to 1 electron-positron pair, which means that X-rays at 1keV give 1000 pairs.

When observing bright sources, signals are still being shifted while new signals already arrive.
This results in lines in the final image. The EROSITA resolution has 384x384 pixels for 1° of the sky.
Future techniques include silicon pore optics or DepFET which allows for every photon to create a
signal and shortens the read out time. It is going to be faster than CCDs.
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3.5 Radio astronomy

Learning goals

e What are the different energy spectral ranges? Which of them can be measured from
the ground, which from space?

¢ How does radio interferometry work?
* Which are major radio telescopes?
¢ What about telescopes at other wavelengths?

¢ How do ground based Cherenkov telescopes and TeV photon detection work?

\ J

The second range in the electromagnetic spectrum that we want to discuss is the radio spec-
trum. Single antenna telescopes such as the Radio telescope in Effelsberg or Arecibo in Puerto
Rico (crashed in Dec. 2020) or RATAN 600 in Russia are restricted to the Rayleigh criterion for
resolution, see Equation 3.2.7.

(a) The Effelsberg Radio telescope. (b) Parabolic antenna surface for max. signal gain.

Figure 3.5.1: Radio antenna set-up.

Naturally, a radio telescope will have a huge dish (on the order of 100m diameter), however the
observed wavelength (on the order of cm) is also much larger than previously investigated. This in
turn results in a resolution of multiple arcminutes. In order to achieve arcsecond resolution, the
dish would have to feature a diameter greater than 50 km. This can obviously not be manufactured.
Parabolic antenna surfaces are commonly used, as they allow to amplify the incoming signal. To do
so, the roughness of the antenna surface must be of the order of the observed wavelength or shorter
to gain good reflection. This is known as the antenna gain.

2
G= 1010g(%) (3.5.1)

3.5.1 Radio interferometry

A parallel wave front might impinge on an array of telescopes. If this happens at an angle 0, then
the two telescopes (array diameter D) experience a path difference L, which yields

L=D-sinf (3.5.2)
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The two telescopes show maxima if
L=n-2A (3.5.3)
or minima for

1

It is evident that the interferometry pattern follows the double slit principle.
Y is then the difference between 2 maxima:

mAr
D

The first 5 maxima all fit within the main maxima of a single aperture. When the two telescopes
are fixed, so is D, and a maxima can be achieved if sin(6) = n%. It is then possible to determine the
position of the source studying the interference pattern produced by the signals (9), as an example
using simply the earth’s rotation which changes 6. However the interference pattern depends and
changes with the baseline.

Y = (3.5.5)

tan9=l I Al [oaly el s Tabalnll; Tl [
D )

Assumption of infinite For distant screen
source distance gives assumption

lane wave at slit so . y
t tan9~sm0~9~'5

d << A/20,3

that all amplitude
elements are in phase.

d = 0
o\

For D>>a
6 this approaches

y

d = \/20,2

Strahlungsstrom + const.

[P U e e e G

Condition for maximum

A e o ] Y e B

aright angle dsinf = mA
and @'~ @ . mAD ; d = A/63
= olit wi. y= AR O B |
a = slit width d Winkel 6 zur optischen Achse
(a) Telescope interferometry. (b) Interference pattern with changing baseline.

Figure 3.5.3: Basic principle of interferometry.

The improvement in angular resolution of a double aperture array with distance d with respect
to a single aperture D is given by
Op A 2Der 2Dt

== 3.5.6
Oper d A D 3.5.6)

Only two telescopes are not enough as they are blind to angles 619 >> %, since the interference
contrast disappears. This is why many telescopes at different base lines are necessary to offer a
broad range.
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Some known arrays:

* Very Large Array (VLA): New Mexico, USA: 27 Antennas each 25m diameter = array
baseline =36km = 0.1”

* Very Long Baseline Interferometry (VLBI): different continents = 107"
e ALMA:Atacama Large Millimetre Array,Chile , D = 16 km

¢ Radioastron: Russian commando but designed to be space based (future project).

4
Y%
2 2 4 4
, ¥ 44344 2% o
2
Weltweites VLBI

Figure 3.5.4: Global and European distribution of VLBI telescopes.

X-ray interferometry is not possible as of now, as it becomes increasingly difficult to hit a max-
ima with large base lines for shorter wavelengths. For optical, one needs high mechanical precision
however there are also systematic problems or atmospheric fluctuations.

3.6 Infrared astronomy

Near Infrared (NIR) is, for the most part, still observable when ground based. However impinging
effects such as by the atmosphere can still state a problem. This is why, besides ground based
telescopes, there are also efforts to outsmart the issue by going beyond a substantial amount of the
atmosphere, e.g. with the Stratosphiren-Observatorium fiir Infrarot-Astronomie (SOFIA).
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(a) SOFIA set-up. (b) Flux distribution for different wavelengths.

Figure 3.6.1: The SOFIA observatory (a) and the flux distribution for different wavelengths (b).

This plane based telescope is a DLR-NASA venture. Far infrared telescopes (FIR) are space
based only. FIR telescopes such as IRAS, Spitzer, Hershel, ISO or JWST need to be cooled down
to a few Kelvin to reduce the self inflicted noise by thermal radiation (liquid Helium). They are
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usually placed at the Lagrange point L2 in 1.5 million km from earth. JWST uses a proper multi-
layer sun shield. IR is especially interesting as most objects of the re-ionized universe (early phase)
appear strongly red shifted (to IR).

3.7 TeV astronomy

TeV describes energies above 1012 eV. Particles with these energies can not be measured directly
in space as the incoming flux is too small. This would require a huge collective area. Again, it
is technically not possible to place telescopes with the required collective area in space. However
luckily, highly energetic particles penetrating the atmosphere create showers of secondary particles
which cascade down to Earth’s surface. These can be measured with so called Cherenkov telescopes.

(a) Cherenkov telescope principle. (b) Cherenkov radiation.

Figure 3.7.1: Cherenkov radiation detection.

They can be either created by
® Pair production: electron/ positron
* Bremsstrahlung

These particles produced move at relativistic velocities which in turn allows them to radiate
super luminally (Cherenkov UV light). These showers start at about 8 km altitude and last between
10 and 20 seconds. The dispersion angle is of the order of 1 to 2 degrees. This corresponds to a circle
with radius of 120m. This means that an array of telescopes in necessary.

(a) H.E.S.S. front view. (b) H.E.S.S. side view.

Figure 3.7.2: High Energy Stereoscopic System (H.E.S.S.) in Namibia.
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The signals can be tracked and they are clearly distinguishable from other incident radiation.
The only problem here is that the UV measurement requires the reduction and cancellation of
all background. This is difficult as conditions basically need to be perfect, meaning: no weather
infringements even if far away. They also require photo multiplier detectors (PMTs) rather than
CCDs. Telescopes of this sort include the currently developed Cherenkov Telescope Array (CTA)
and the existing High Energy Stereoscopic System (H.E.S.S.) in Namibia. Control segments, e.g.
actuators for the HESS mirrors, were calibrated at the University of Tiibingen.
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Chapter 4

Solar system

Abstract. In this section we will look at our solar system, in particular at its composi-
tion and also at each planet individually. Although the other planets of our solar system
are - on an astronomical scale - very close to us, there are still new stunning and exciting
findings today. A recent example is the potential (!) habitability of Venus’ atmosphere
for microbes, which has been elaborated on due to anomalies in the atmosphere.

Keywords: Planets, greenhouse effect, tidal forces

Learning goals

* Name members of the Solar System.

* Name planets and their characteristics.
* What are differences between Solar System objects?
* What impacts on the energy system of a planet?

e What are tidal forces?

4.1 Definitions

The solar system is defined as a gravitationally bound system comprising the Sun and the objects
that orbit it, either directly or indirectly. Our solar system currently consists of one star (the sun)
with eight planets orbiting it, namely Venus, Mercury, Earth, Mars, Jupiter, Saturn, Uranus and
Neptune. Furthermore the solar system features 5 dwarf planets, namely Pluto, Ceres, Eris, Make-
make and Haumea. However with decreasing size they are increasingly difficult to detect which
hints at the assumption that there are many more potential candidates to be detected. Currently
we have also listed 214 planetary satellites (another word for moons) in our solar system, most of
them captured by Saturn (82) and Jupiter (79). Next on the list would be Uranus with 29 moons.
It is not a coincidence that these planets have that many moons. Firstly, they have a very strong
gravitational pull when compared to other planets like Earth. Secondly, they are thought to capture
asteroids, for instance Phoebe, a moon of Saturn, is thought to be a former asteroid. In a sense,
they protect earth from potentially harmful impacts. In addition, there are a ton of small solar
system bodies: 829400 asteroids (millions to be detected larger than 1 km), 3592 Comets (billions
to trillions to be detected), also there are many meteoroids and a lot of dust. Space, which may
seem empty at first, actually is not that empty after all, if we consider all these bodies. On top of
that, there is also interplanetary medium and solar wind, which includes radiation and magnetic
fields.
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Figure 4.1.1: Solar system orbits.

Continuing our definitions, a star is a gaseous astrophysical object that, at least for some epoch
of its evolution, undergoes nuclear burning in its core, so that its thermal heat production balances
its own gravity (assuming hydrostatic equilibrium).

The definition of a planet actually involves some more conditions as specified by thelnternational
Astronomical Union (IAU) on August 26 in 2006. A planet is a celestial body that

¢ isin orbit around its local star

* has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a
hydrostatic equilibrium (nearly round) shape

¢ has cleared the neighborhood around its orbit

According to the IAU, a dwarf planet is a celestial body that fulfills the first two criteria of
planets, but has not cleared the neighborhood around its orbit, while not being a satellite itself.
Therefore the IAU downgraded the status of Pluto to that of a dwarf planet in 2006. Pluto shares
its orbit with many objects of the Kuiper belt with Charon being the biggest neighbour with almost
similar mass to Pluto itself. There are many more potential candidates to be accepted as dwarf
planets by the IAU and maybe even more to be detected.

All other objects, except satellites, orbiting the sun (fulfilling the first criterion) shall be referred to
collectively as small solar system bodies.

4.1.1 Spatial scales

In order to wrap one’s head around the structure of the solar system, it is important to get a grasp of
the vast scales that are involved. First, let us look at the following table that includes the distance
from the planets to the Sun in AU (astronomical units, i.e. the distance from Earth to the Sun) and
in meters with 1AU =~ 1.5-1011m. All important conversion factors can be found in the appendix.
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Planet | Semi-major axis [AU] Semi-major axis [m] Mean radius [10km] Mass [10%7 g]
Mercury 0.39 5.8343-101° 2.4 0.33
Venus 0.72 1.0771-1011 6.05 4.9
Earth 1 1.496-1011 6.37 6.0
Mars 15 2.244 101 3.4 0.64
Jupiter 5.2 7.779-10M1 70 1900
Saturn 9.6 1.436-1012 58 570
Uranus 19 2.842-1012 25.4 87
Neptune 30 4.488-1012 24.6 100

Table 4.1: Solar system: distances to the Sun.

We can see in table 4.1 that the distances between the planets increase strongly for the outer
planets. For a nice visualization of the spatial scales of the solar system, consider to download
the ,,Exoplanets“ App developed by Hanno Rein or use one of the many available online tools. In
addition it is worth mentioning that the combined mass of all celestial bodies in the solar system
excluding the sun, amounts to approximately 1%.

Looking at the bigger picture, we must also mention belts in the solar system. In fact, there are two
of them. One is the asteroid belt in between Mars (~ 1.5AU) and Jupiter (~ 5.2AU) which includes
the dwarf planet Ceres. On the other hand, there is the famous Kuiper belt behind Neptune (30 —
50AU) which hosts the dwarf planets Pluto, Eris, Makemake and Haumea. Zooming out even
further reveals two more interesting objects. One is Sedna: a body with an eccentric orbit (e = 0.85,
perihelion: 80AU, aphelion 900AU and semi-major axis 500AU). Even further out, there is the Oort
cloud with comets beyond 50,000AUwith a combined total mass of 5 Earth masses. All of which
can be seen in 4.1.1.

Finally, let us look at the extension of the bodies in the solar system. For that, we look at the
following table, presenting the approximate radii of many celestial bodies.

Object Radius [km]

Reun 6.957 -10°
R Jupiter 7.1492 -10*
REarth 6.3781 -103

RPlanets [2.4, 70] '103
RDwarfPlanets [500, 1200]

RMoons <2700
RAsteroids [0-001, 300]

RComets < 200
RMeteroids <0.001

Table 4.2: Solar system: distances to the sun

Discovery and exploration
A quote of NASA’s outreach sums up why we should discover and explore our solar system:

"The Solar System — our Sun’s system of planets, moons, and smaller debris — is
humankind’s cosmic backyard. Small by factors of millions compared to interstellar
distances, the spaces between the planets are daunting, but technologically surmount-
able." (NASA, Solar System Exploration Roadmap 2006)

There are several ways to collect information about the Solar System: Telescopes (Earth-bound,
space telescopes), space missions, laboratory work / material science experiments and not to forget,
the development of theories and the application of numerical simulations.
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4.1.2 Energy balance of planets

Almost no other variable in space is as important to the outcome of celestial bodies as their ambient
temperature. It determines fusion in stars and habitability on planets. Naturally a multitude of
factors contribute to the local temperature system. The biggest driver, when it comes to tempera-
ture input in the Solar System, is the Sun.

The solar constant determines it’s energy flux and is given as S = 1370 % or more generally

S =8-(——)" 4.1.1
" =5-(1;5) 41D
It strongly depends on r, the distance from any object to the Sun and is normalized to 1AU. Further
of importance is the Albedo value which denotes the reflectivity or ability to absorb thermal energy
from radiation. A=1 for white surfaces with perfect reflection (no energy intake), A=0 for black
surfaces (complete absorption). Earth has an Albedo of 0.31 which among other things depends on
the amount of ice and clouds. When in equilibrium, the amount of energy absorbed by a planet at

distance r is given by
7R%.(1-A)-S(r) (4.1.2)

equals the (Black body) emission declared by Stefan Boltzmann. In this case
4nR? 04y Ter* =4nR%-F = 1R*-(1-A)-S(r) (4.1.3)

Other effects include inner heat (gravitational quenching inside Jupiter and Saturn) or the green-
house effect which denotes the ability of the atmosphere to stop planetary re-radiation (in IR). The
"goodness" of which obviously depends on the constituents (COg) and thickness of the atmosphere.
A planets temperature also depends on night and day, so rotational speed is also to be considered.

4.1.3 Lunar specs

The Moon is out closest compatriot and a distance of 384 000km which is close to 60 Earth radii.
The Moons periapsis is 362 000 km and its apoapsis 405 000 km with almost no eccentricity making
the moon appear 3’ larger when it is at its periapsis. Its mass is only 1/81 of Earth while its radius
is 27% that of Earth. This means that the joint center of gravity, around both objects orbit is still
within Earth. In terms of timing we have:

¢ siderial month: time that it takes for the moon to orbit the earth 27,3 d

¢ synodic month: 27,3 d + earth moving around sun. So new moon to new moon is 29.5 days.

T=29.5d
(Synodic)

e 5B FIRST
QUARTER
WAXING WAXING
GIBBOUS CRESCENT

@ %

T=27.34
(Sidereal)

. 4

L

WANING ‘“ WANING
GIBBOUS CRESCENT
LAST
QUARTER

FULL MOON

T=0d
New Moon

(a) Lunar phases. (b) Synodic and Siderial timing.

Figure 4.1.2: Moon characteristics.
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A solar eclipse is achieved, when the Moon is located between Sun and Earth. A lunar eclipse
means the Moon is in Earth’s shadow.

PENUMBRA EARTH'S
UMBRA

EARTH

ORBIT

TOTAL ECLIPSE
PARTIAL ECLIPSE

Figure 4.1.3: Lunar and Solar Eclipses.

The Moon features approximately 80% Terrea, meaning bright, high-lying areas, scattered with
craters, which are linked to meteorite showers. 20% are Maria, meaning dark and low-lying areas.
It is thought that the Moon came into existance around the same time Earth did which was 4.5 -10°
years ago.

Lunar maria

Figure 4.1.4: Moon interior.

Formation theory suggests that the Moon was created by Earth crashing into a smaller (Mars
size) planet, as the Moon consists in parts of the same materials found in Earth’s mantel. Today
the Moon has a surface gravity of 1/6 from what we have on Earth meaning it can not hold on to an
atmosphere. Also it indulges extreme weather with temperatures ranging from -130°C to + 130°C.

4.1.4 Gravitational interaction

The side of an object closer to moon, such as like on Earth, will be attracted stronger via gravity
in comparison to the part further away due to non zero size and mass of the object. This means
the object can be deformed or even brake. This is called tidal disruption effects. On Earth this
means that the moon inflicts 2 high tides a day. The side facing the moon witnesses the water being
pulled towards the moon more strongly, creating a bulge every 12h 25min. Simultaneously the side
facing away from the moon allows the less strongly attracted water to escape slightly, resulting
in the second bulge. You could say, Earth rotates beneath the tides which are approximately 2.5h
advanced (bulge not pointing directly towards moon). The bulges therefore inflict a torque (tidal
friction), which means that the moon is slowing down Earth’s rotation. As the angular momentum
of the system must be conserved, the distance between moon and earth increases by approximately
4cm per year.
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Figure 4.1.5: Tidal forces.

Therefore the length of the months increases. Equilibrium will be reached when Moon and
Earth face the same side of each other, or 1 day equals 1 synodic month. This will happen in
roughly 109 yr. For a more extensive explanation, see chapter 4.3.

4.2 Planets

We will now look at each planet individually and also at the different categories for classifying
planets.

Rocky planets

The characteristics of rocky planets are that they have a solid surface and gaseous atmosphere of
negligible mass. They usually feature craters which they most likely collected during the late heavy
bombardment phase (such as the moon). Naturally, planets with active and dynamical surfaces,
i.e. via volcanic activity allow for craters to disappear over time (like Earth). They can feature
planetary satellites like Earth’s moon and the two moons of Mars.

Finally they can feature potential magnetospheres. The origin of magnetospheres is linked to the
liquid iron core of a planet which functions as a huge dynamo which creates the magnetic field, due
to rotation with respect to the upper layers of the planet.

It is worth mentioning that the magnetosphere is the lone protector of a planet in regard to the
Sun’s solar wind. Since the surface area to volume ratio increases with decreasing size for spherical
objects, smaller planets are likely to cool quicker. This in turn has solidified Mars’ once liquid core
over time, resulting in a reduction of the magnetosphere and ultimately having its atmosphere
stripped due to less protection via the magnetosphere. Without an atmosphere, maintaining a
balanced temperature household is close to impossible in the hostile environment which is space.
Consequently Mars is the deserted world we see today. Regarding the internal structure of rocky
planets, we can say that in general they have a radial extent silicate mantle which is equal to or
larger than the radial extent of the iron core, which has sizes of around 1800 to 3500km. On top,
there is a crust layer which is between 5 and 125km thick.
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(silicates)

Core
(Fe, Ni, S)

Figure 4.2.1: Internal structure of rocky planets.

e core consists of solid or fluid Fe, S, Ni

* mantle of the core is made of viscous, molten SiO4 rich rock. Rising material in the mantle
causes volcanoes. Mantle dynamics can drive plate tectonics and thus also lead eventually to
volcanoes and earthquakes.

e Crust is thin = 100km silicate rock

Rocky planets: Mercury

¢ highest ellipticity e=0.2

* 3:2 spin orbit resonance meaning 3 rotations per 2 revolutions. In this constellation
the time between two sun rises is 2 years.

* almost no atmosphere

¢ geologically active for billions of years

¢ partially liquid core, hints of weak magnetic field

¢ surface similar to Moon highlands with craters, but no Maria

* no moons

¢ small and is scorched by the sun

* temperatures range from 330°C to 430°C during day time to -180°C during night time
¢ Space Missions (selected)

— Messenger (NASA orbiter, 2011-2015)
— Bepi Colombo (ESA & JAXA with 2 orbiters, 2018 lift off and arrival 2025)
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Rocky planets: Venus

¢ Counter-rotating (slowly: 243 days for a year) with respect to Earth’s spin
¢ Extremely dense atmosphere at 96 bar (96.5% CO2, 3.5% N, ...)

¢ Strong greenhouse effect with opaque clouds in 40-70km altitude raining sulfuric acid,;
hottest surface planet due to strong greenhouse effect T > 460°C

¢ wind speed of clouds at roughly 300 km/h. Probably linked to the thermal activity
* Active volcanism, no plate tectonics, no internal magnetic field

* No moons

* Second brightest object in the night sky (after the Moon)

* 2 continents as inferred from surface structure analysis

* Space Missions (selected)

— Mariner 2 (1962)

- Venera 1-16 (Lavochkin Soviet Union)

— Venera 7: first landing on another planet in 1970
— Mariner 10 (NASA, 1973)

- Vega 1+2 (Lavochkin, Soviet Union, 1984)

- Magellan (NASA, 1989)

— Venus Express (ESA, 2005)

- Akatsuki, IKAROS, and Shin’en (JAXA, 2010)

Figure 4.2.2: Venus landscape.

Rocky planets: Earth

¢ Largest terrestrial planet, densest planet

* Geology: volcanism, plate tectonics, magnetic dynamo, liquid water
e Axial tilt of 23° — Seasons

¢ Second highest moon:planet mass ratio (after Pluto and Charon)

¢ (Intelligent) life
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Rocky planets: Mars

* QOutermost terrestrial planet

* Two moons: Phobos and Deimos

* Axial tilt of 25° — Seasons

* Geology: volcanism, inactive plate tectonics, no magnetic field
¢ Thin atmosphere — low pressure — nearly no liquid water

* red colour is due to iron oxide with white poles covered in ice

* it features the biggest ridge in the Solar system Vallis Marineris: 4000km long,
200km wide and 7 km deep. For comparison, the Grand Canyon in Arizona is about
800 km long and 1.6 km deep. Simultaneously it has the highest mountain in the Solar
system Olympos mons at 24km height and 600 km width. Again, for comparison
Mount Everest is 8864 m high.

* Space Missions: ... many

Dark, narrow streaks on Martian slopes such as those seen at Hale Crater are inferred to be
formed by seasonal flow of water on contemporary Mars. There have been many rovers on
Mars, such as in the Mars Pathfinder mission (1997), in the Mars Exploration Rover (MER)
mission sending the rover called "Spirit" (2004 - 2010) as well as Opportunity (2004 - June
2018). In the Mars Science Laboratory (MSL) mission the rover Curiosity (2012 - present)
has been sent to Mars and it is still operating there today.

Figure 4.2.3: Water on Mars ?

Giant planets

Besides the rocky planets, there are also the giant planets. Unlike rocky planets, they have no
solid surface. The giant planets can be divided into two subcategories. First there are the gas giants
which include Jupiter and Saturn, secondly there are the ice giants like Uranus and Neptune. Most
of them have ring systems. The rotation period is high and lies between 10 an 18 hours. Since they
have no solid surface, they become oblate due to centrifugal forces. Also, the atmospheres are rather
interesting: they do not rotate uniformly, but they rotate faster at the poles than on the equatorial
height. This is why non uniform wave fronts show frictions patterns (such as on Jupiter). The
compositions are close to pre-solar nebulae, i.e. 75% hydrogen, 25% helium by mass. In the case
of gas giants the atmosphere predominantly features hydrogen, helium and traces of metals in it.
Ice giants on the other hand also harbour, helium, and traces of metals, but also a lot of ice. Both
categories also have a magnetosphere. For gas giants, there is a dynamo effect due to currents in
the interior metallic hydrogen layer. The origin of the fields on Ice giants is not yet fully understood.
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Figure 4.2.4: Gas and Ice giant interior.

¢ Core: silicate and ice further out

¢ Mantle: liquid metallic hydrogen for Saturn and Jupiter. This inflicts a magnetic field. Hence
is why Uranus and Neptune are called Ice giants, because their mantle consists predomi-
nantly of water ice.

¢ Crust: no crust -> gaseous hydrogen

Giant planets: Jupiter

¢ Largest and most massive planet

e Jupiter’s mass is 2 times the mass of all the other planets combined. It influences the
asteroid belt as well as the orbit of the Greeks, Hildas and Trojans.

* 53 + 26 =79 moons

¢ Galilean moons: Io (yellow due to high amounts of sulphur & SOy. It has the most
active vulcanism due to the gravitational heating of Jupiter), Europa (like our Moon
and expected to have an ocean under a thick crust of ice.), Ganymede (size of mercury
and half its mass, thus only moon with magnetic field), Callisto (more like snowball)
(Galileo Galilei 1610)

¢ Fast rotator (rotation 10h) — oblate
¢ "Great Red Spot" (cyclone) wandering over Jupiter’s visible surface
¢ Strongest magnetosphere of all planets

¢ Kelvin-Helmholtz-Contraction (2 cm/yr) — release of gravitational energy

Galileo 1997

Europa Ganymede Callisto

Figure 4.2.5: Galilean Moons.
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Giant planets: Saturn

* Ring system (remark: all giant planets have one, however the density is usually much
smaller): ice, rocky debris, dust

¢ Fast rotator (rotation 10h) — oblate
* 53+29 = 82 moons

— Famous moon Titan (maintains an atmosphere)
— Famous moon Enceladus (harbors icy geysers from liquid salt water)

— Only planet with two moons in co-orbital motion
¢ No Trojan asteroids (in contrast to all other planets except Mercury)
¢ Magnetosphere (5% of Jupiter’s magnetic field)
¢ Features lakes of fluid methane

* Most famous / recent mission: Cassini-Huygens (NASA / ESA / ASI)

Launched on October 15, 1997

In orbit around Saturn on July 1, 2004

Huygens (ESA) landed on Titan on January 14, 2005
Controlled crash on September 15, 2017

Figure 4.2.6: Galilean Moons.

Giant planets: Uranus

* Axial tilt of rotation very close to the ecliptic at 90° — by far the most unusual orien-
tation (previous collision)?

* Just visible with the naked eye at mag = 5.6 (human eye mag = 6)
* 27 moons
e Atmosphere

— Featureless but coldest atmosphere of all planets 50 K
— Cyan color (in the visible) due to 2.3% methane, CH4 (by volume)

e Even lower heat flux than Earth — collision or internal heat flux barrier

¢ Magnetic field tilted by 60° from rotation axis; center shifted by 1/3 of the planetary
radius towards southern rotational pole

* Mission: only a single fly-by of Voyager 2 (NASA) in 1986
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Giant planets: Neptune

¢ Although is not visible with the naked eye it can be predicted due to multi body system
pertubations. It interacts with the Kuiper belt as well as with Pluto who is crosses
orbits with.

* Proposed by Alexis Bouvard (due to irregular orbit of Uranus) in 1821; Predicted by
John Couch Adams and Urbain Le Verrier in 1845; Observed by Johann Gottfried
Galle in 1846

* 14 moons

* Axial tilt of 28° — Seasons

* QOuter atmosphere temperature 55 K > Uranus’ temperature
* Magnetic field tilted from rotation axis and offset from center

® border of planetary system reached. Further out: Pluto and other Trans-Neptune
Objects (TNOs) compose the Kuiper belt

* Gravitationally interacting with the Kuiper belt
* Mission: only a single fly-by of Voyager 2 (NASA) in 1989

e "Great Dark Spot" (anticyclone detected in 1989), "bright smudge", and "Small Dark
Spot" (southern cyclonic storm in 1989); lifetime of months

Now that we have gone into detail about every single planet, we turn towards out next objects
of interest which are the dwarf planets.

Dwarf planets

The dwarf planets in our solar system are Pluto, which has 5 moons, Ceres with no moons, Eris,
Makemake and Haumea. Ceres is located in the asteroid belt, the others in Kuiper belt. Up to
date (2020), only missions to Ceres and Pluto have been completed. Dwarf planets have a highly
eccentric orbit in general with high inclination.

Let us end the list previously started by listing remarkable facts about Pluto and Ceres only.

Dwarf planets: Ceres

® Only dwarf planet outside the Kuiper belt

¢ (Classified as an asteroid until 2006

* Smallest object confirmed to be in hydrostatic equilibrium

¢ "Failed Planet" (due to vicinity of Jupiter?)

* No moon ®Surprising: No large craters — icy layer below the surface
* Contains liquid water — Potential for life?

e Mission: Dawn (NASA) in 2015
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Dwarf planets: Pluto

* Classified as a planet until 2006
* From 1979 to 1999, Pluto was actually closer to the sun than Neptune
* 5 moons: Charon, Nix, Hydra, Kerberos, and Styx

e Highest Myoon / Mplanet mass ratio (Pluto - Charon) at almost 1:1 which means that
the center of mass of the system lies outside Pluto.

e Mission: New Horizons (NASA) in 2015

4.3 Tidal forces

We will now introduce gravity, centrifugal forces and the rotation movement step by step in order
to illustrate how forces on a single body (e.g. on a planet) are not uniformly distributed, but rather
have different strengths on different areas.

Starting with gravity, we get the following sketch.

2R
>

______________________________________ N G

rn=r+2R

|

Figure 4.3.1: Tidal forces: Gravity

From this illustration and from the fact that gravity depends on the distance r, it becomes clear
that there must be a different gravitational force pulling on the front of the planet and on the back
of it. Depending on the distance r; or rg to the central mass M, the size R of the affected object,
and its material properties change. The object can be distorted or even break apart, which is called
"tidal disruption". Considering the centrifugal force, we obtain the following, modified situation:

Gravity + Centrifugal Force:

a =—GMr?2
rav
¢ 2 agTaV(r) = accnt(r)
Aot = + @7 1, around center of mass
Bt
agmv(r—R) >acem(r—R) agrav(r—i_R) < auenl(r+R)
- ..\‘
M
............ .
3 <>
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Figure 4.3.2: Tidal forces: Gravity + centrifugal force
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If we assume a homogeneous mass density of the undisturbed planet, then
agrav(r) = Qcent(7) 4.3.1)

holds at the center of mass of the planet at any time, even with distortion. Also, the centrifugal
acceleration due to the centrifugal force is given by

Qeent = 0212 (4.3.2)

Thus, the inside facing part of the planet (smaller r) experiences a weaker centrifugal force than
the outside facing side (larger r). Taking the gravitational force into consideration, this leads to
further distortion and the object becomes elliptical with two bulges. In figure 4.3.2 the left-hand
side of the planet is dominated by the gravitational force (blue) and the right-hand side by the
centrifugal force which points in the opposite direction. In the center, the forces are in balance. In
this final step, we want to introduce the rotation of the celestial body itself.

Gravity + Centrifugal Force + Rotation:

=-GMr?

agl'ﬂV

a’CL‘Il[

Q>w not tidally locked yet -
Q/Q =+ @/w prograde orbit

_ 2
=+ @ 1y,

.,

Figure 4.3.3: Tidal forces: Gravity + centrifugal force + rotation

This effect leads to shifted bulges due to drag forces. This in turn may result in tidal heating of
layers of the planet. Also the gravitational net torque changes due to offset of the massive bulges.
Furthermore, the spin of the object slows down over time. If the object is a fast rotator, a slow
satellite rotating in propagate direction (in the same direction as the rotation around the central
mass), this results in tidal locking, i.e. there is only one side of the body facing the central mass
for all times and one facing away from it. If, on the other hand, the object is a fast satellite, a slow
rotator and has a propagate orbit, it also can be tidally locked, but also disrupted.

The following table sums up all the effects in every case discussed.

prograde orbit retrograde orbit
Q/I0=+dlo | QIQ=-Flo
angular momentum

slow satellite / o/ r/ @\ . conservation!
fast rotator S

QN QN tidal locking!
fast satellite / o @9 -~ @ (tidal distuption!
slow rotator Q<w

Q/ QN

Figure 4.3.4: Tidal forces: Summary
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4.3.1 Roche limit

In this context it is also clear to see how rings form around very massive planets or stars. For
that we define the Roche limit as the the smallest distance of a celestial body below which objects
around it are gravitationally disrupted by its tidal forces. These were discussed in the context of
Roche lobes of stars in section 2.3. At the Roche limit

M primary )
- >

Psecondary

dRoche X ( (4.3.3)

the forces that hold the secondary mass together are overwhelmed by the tidal forces of the primary
mass. Its "pulverized" leftovers can then orbit the star at the Roche limit. One may ask why there
is a Roche limit at all, i.e. why the difference in net force AF becomes larger at all. The reason
for that is quite simple. We can just look at the gravitational force, which is Fgrqy riz Thus,
for smaller distances r, the difference in gravitational force at small distances (red points in figure
4.3.5) becomes much more significant than for larger distances (blue points in figure 4.3.5).

r

0 1 2 3 4 5 [

Figure 4.3.5: Tidal forces: Roche limit. The plot shows F(r) = rlZ Red points and blue points are
both r =0.5a.u. apart.”

4.4 Planetary Satellites

"Planetary satellites (often called "moons") are not to be confused with man-made satel-
lites (such as weather and communications satellites) in orbit around the Earth. Plan-
etary satellites are small bodies in orbit about a planet (actually the planet’s system
barycenter). Probably the best known planetary satellite is Earth’s moon. Currently,
we know of no satellites in orbit around Mercury or Venus. All the other planets have
at least one known planetary satellite."

- Ryan S. Park, NASA.

1The term “a.u.” here should not be confused with “A.U.". Latter stands for the astronomical unit, which is a well defined
length. “a.u.” on the other hand stands for “arbitrary units" and indicates that the exact order of magnitude is not relevant
for the discussion.
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Speaking of planetary satellites, it is worth to consider the "dancing moons of Saturn". One moon
is Epimetheus with an orbit at approximately 152,010/90 + 10km, which is about 0.3AU. It has a
radius of about 60km and a mass of 5.3-10%0g.

Janus, the second moon of interest has a orbital distance of approximately

152,060/40+ 10km with a radius of around 90km and a mass of around 19-10%°g, which is 3.6 times
as much as his fellow moon Epimetheus. Epimetheus and Janus are on a co-orbit (orbital difference
< 50km). Due to their different orbital speed, they ‘'meet’ roughly every 4 years.

The gravitational attraction of the two moons leads to a (de-)acceleration of their orbital velocity,
accompanied by a shift in their orbital radius according to Kepler’s third law of planetary motion.
That is to say, that the moons do not only feel the gravitational pull of Saturn itself, but also the
one of the other moon. The following illustration shows these "dancing moons", namely Epimetheus
and Janus.

In the co-moving frame of Janus:

"horseshoe" orbit of Epimetheus

Figure 4.4.1: Dancing moons of Saturn

After they meet, they swap orbits in a 100 days lasting maneuver. In the frame co-moving with
Janus (figure 4.4.1), Epimetheus is on a so-called "horseshoe orbit" (related to the circular restricted
three-body problem). The closest distance of the two moons is 15,000km > 100R g p;metheus/Janus
but they never pass each other.

Space missions to analyse planetary systems include
* Pioneer 10 in 1973 and Pioneer 11 in 1974
* Voyager 1 and 2 in 1979

¢ Galileo (NASA) from 1995 to 2000 *New Horizons in 2007

4.4.1 Asteroids

Asteroids are small but usually bigger than 1km across (compared to all previously discussed ob-
jects), rocky bodies that orbit the Sun. There are approximately 500 000 objects mainly located
within the asteroid belt between Mars and Jupiter and as Trojans in co-orbital motion with planets
(except for Mercury and Saturn). Sometimes one includes trans-Neptunian objects (TNO) (aka mi-
nor planets). Many other TNO’s are probably dwarf planets by definition (remember: “spherical®).
Else, they belong to the class of asteroids. It becomes exceedingly difficult to decide. An example of
this sort is the asteroid Arrokoth. The largest asteroids are "(4) Vesta" and "(2) Pallas" with radii
up to 260km, where the numbers in brackets are the so called "asteroid discovery number". The
smallest asteroids are only about a few meters in diameter. The ration of number density to size
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follows a power law. Even asteroids can have moons or satellites too. The composition of an aster-
oid and its interior structure can vary from that of a (dwarf) planet to uniform / undifferentiated
structures. Many missions have discovered asteroids and investigated their properties, such as:
Galileo (NASA) imaged (951) Gaspra and (243) Ida in 1991 and 1993, NEAR Shoemaker (NASA) in
orbit around (433) Eros, landed in 2001, and many more.

4.4.2 Comets

Comets are small, rocky-icy bodies orbiting the Sun (basically dirty snowballs with silicates). They
are mainly located within the Kuiper belt behind Neptune with a rather short period of P < 200d
and within the Oort’ cloud where long-period comets orbit with P > 200d in isotropic orbits.

The Structure of comets can be simplified as follows: They have a nucleus, which is solid with
a rocky-icy core of R € [1,50]km. The coma is a dusty, gaseous atmosphere with an extension of
around R =~ 10°km. Last but not least, comets have tails of a length up to 10km and consist of
ionized gas (pointing away from the Sun) and dust (dragged along).

Whenever they approach the Sun on its highly elliptical orbit, the water ice evaporates and creates
a gaseous envelope/halo. Regarding the missions, Giotto was one of the first which was a fly-by
by ESA of 1P/Halley in 1986 made the first imaging of a nucleus. Many more followed by the
NASA and ESA, even with sample returns. One of the latest achievements in this area was the
exploration of the comet 67P/Churyumov-Gerasimenko with the ESA mission ROSETTA and its
lander PHILAE.

4.5 Solar wind

The sun frequently ejects energy in form of particle showers which can be linked to flairs or mass
ejections. These are distributed via charged particles such as electrons, protons or He-nuclei which
travel at approximately 800 kTm. They impinge on earth in numbers of 5-10 per cubic cm. They rep-
resent the suns mass loss of roughly 2-3 101 solar mass per year. This is comparatively low. Earths
magnetic field, which shields us by rerouting the particles (Aurora), is continuously deformed by
the solar winds pressure.

Figure 4.5.1: Deformation of Earth’s magnetic field by solar wind.

4.5.1 Others

Besides the objects discussed above, there are many more objects present in space. For instance in
our solar system there are interplanetary media. The composition of the interplanetary medium is
dust, cosmic ray and solar wind. The density follows the distribution

prpm o (F=7)72, (4.5.1)
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where 7, denotes the position vector of the Sun. We can see, that the density decreases in a
quadratic relation. The solar wind can be neglected at between 110 and 160AU. Beyond this
point the interstellar medium (ISM) dominates. But that is not all, magnetic fields and radiation
also fill interstellar space. We can observe the solar wind when it interacts with comets and the
aurora of the earth.

Even at the outer edge of the solar system, there is still something happening: The heliosphere
is the border where the solar wind impact becomes stronger than the pressure of the interstel-
lar medium. The termination shock describes, as the term suggests, the location, where the solar
wind becomes subsonic. The heliosheath is the turbulent outer edge of the heliosphere and the
heliopause the equilibrium region between the heliosphere and the interstellar matter. From here
on out there are no further changes - the "no mans land" of our solar system if you want to call it
that.
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Chapter 5

Fundamental properties of Stars

Abstract. Introduction of the general properties used to describe radiation from stars:
luminosity, flux, intensities, emissivity and absorption. We discuss the radiation trans-
port equation, and the black body spectrum. In addition we also introduce the Stefan-
Boltzmann law. Finally we touch up on magnitudes and colours.

Keywords: Flux, radiation transport, black body emission, magnitudes

Learning goals

¢ How are the Flux, specific intensity and luminosity defined? What is the physical
meaning of these quantities?

¢ What does radiation transport mean? How is the intensity modified by emission and
absorption?

* What are the main features of the black body spectrum?

¢ What are apparent and absolute magnitude? How are these quantities changed by
extinction?

e What do colors denote in astronomy?

. 7

As you have learned in the introductory courses on quantum mechanics, photons have a dual na-
ture, one of the particle and the other as a wave.!
Wavelength and energy of a photon are given as:

A=<

£ E=hv. (5.0.1)
v

From the above equations, momentum can be written as:

_hv

p (5.0.2)

c

Single photon counts are important in astrophysics, but ultimately we are interested in macroscopic
quantities concerning radiation.
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Region AA) A (cm) Frequency (Hz) E (eV)

Radio > 10° > 10 <3x10° <107®
Microwave 10° - 108 10-0.01 3x10°-3x1012 1075 -0.01
IR 10% — 7000 0.01-7x 107° 3x1012-4.3x10M" 0.01-1.5
visible 7000-4000 7x107°-4x10"° 4.3x10%-7.5x101 1.5-3
Uv 4000-10 4x107°-1077 7.5x10M -3 x 1017 3-103
X-Rays 10-0.1 1077 -107° 3x1017-3x 10" 103 -10°
Gamma Rays <0.1 <10-9 >3 x 1019 > 10°

Table 5.1: Ranges and characteristics of electromagnetic spectrum.

5.1 Radiation

5.1.1 Basic Definitions

In this chapter, we will review the most fundamental notions of radiation, namely the Flux, total
flux, the intensity and their connection, the energy density, momentum flux density and finally the
luminosity.

The Flux

Let’s assume that in a time interval d¢ a total energy dE is received by an element of area dA (it
could be a detector or an element on the surface of the star!) perpendicular to the direction from
which the radiation arrives. F can change depending on the orientation of the element.

dA

dQ

Figure 5.1.1: Flux through a surface element

The flux F and its units are defined as:

dE erg
F= Fl=
dAdt ’ LF]

=— (5.1.1)

cm?s
With ergs being an alternative unit for Energy (equivalent to 10”7 Joule). In a similar way, we can
also define the spectral flux density or spectral irradiance as

dE erg
F =—=F F =
v dAdtd'V E B [ V]

It can be defined as Flux per unit of frequency, that is the energy per unit area, per unit time,
per unit frequency. Often a dependency on frequency is denoted by the term "specific", i.e. specific
flux, meaning nothing more than "how much flux in which energy band?". Note also that one could
define the spectral irradiance per unit of energy instead of frequency.

_— 5.1.2
cm2sHz ¢ )

1In case you want to refresh your memory, just take a look at Appendix
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Total flux

The total flux in an energy (or frequency!) band can be determined by integrating the flux in dE by
the limits of the energy range:

Eg
Fro g1 = FgeVem 2s eV HdE (5.1.3)
E;

Some useful relations to convert total fluxes are:
F,(ergem 25 'Hz 1) =3.336-10"1°22(A) - F)(ergem 2s7'A) (5.1.4)

F,(ergem 25 'Hz 1) =6.626-10"2"Fg(eVem 25 1eV)) (5.1.5)

Intensity

The specific intensity is defined as energy per unit area per unit time per unit frequency (or equiv-
alently per unit of energy) per unit solid angle ("Energy per unit everything"). Note here that I,
does not depend on 0 as it is a feature of the source, whereas the energy recorded at the observer
dE does depend on 6.

Normal

dQ

Figure 5.1.2: Geometry of an obliquely incident ray

we have
erg

dE, =1,cos0dAdtdvdQ , [I,]= (5.1.6)

cm?2sHzSter’

The solid angle df2 is a measure of the amount of the field of view from some particular point. It is
given as

A
dQ = 2= sin0d0d ¢, (5.1.7)

where A denotes the spherical surface area and r is the radius of the considered sphere.
Note:

* Stars are point sources
* Sun, Moon, Supernova etc. are diffuse sources

The intensity is independent of the source’s distance: it is an intrinsic property of the spurce.
If we take an integration of Intensity over all solid angles we will obtain the total flux!
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From Intensity to Flux

Integrating intensity in all directions would give us the power per unit area and frequency received
from the source, which we happen to be known by the name of spectral flux density, or spectral
irradiance F,:

szf I, cos0d) (5.1.8)
Q

In the case of an isotropic field, we can calculate that F, = 0 since I, is isotropic (const.) and
Jcos6dQ =0. An example is given by the Cosmic Microwave Background (CMB).
The total flux can be obtained by integrating in all frequencies:

Fe f Fodv (5.1.9)
0

This property again depends on the distance, as dA =47R2.

Energy density

In a given volume, the amount of energy per unit frequency per unit of solid angle and per volume
is defined as the specific energy density u,.

di2 JA

| Ay = edt N

Figure 5.1.3: Energy in cylindrical element

_dE

- dVdvdQ
We know that: dV = dAcdt, since photons moves with the speed of light ¢, and relativistic particle
with velocities close to it. Together with

dE =u,dVdvdQ (5.1.10)

Uy

dE =1,dAdvdQ) (5.1.11)

we get that: u, = L by comparing both expressions for dE. If we integrate over the solid angle dQ

c
we obtain .
U, = f YdQ, (5.1.12)
C

which is the total spectral energy density.
Extra information that may be useful:

* Specific radiation density: o, = ﬁ J1,dQ — normalized over space

* uy=fu,(QdQ=1[1,d0=%2J,
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Momentum Flux Density

The momentum per unit of time d¢, per unit frequency of dv, per unit of area dA, from radiation
arriving from the solid angle dQQ is given by the expression

dE,

I
dp, = = “cosOdAdtdvdQ. (5.1.13)
C

For the component orthogonal to the area we get

E I
Y = Xcos?0dAdtd,dq. (5.1.14)
C

d
dpycosf =

For an isotropic field: Flux is zero, but momentum flux density is not zero since it is proportional to

COSZ.

The momentum flux density is then given as
I
I, = f ~cos?0dQ = f P, -cos(0)dQ (5.1.15)
Qc Q

Integrating I, over dv, we obtain the momentum per time and per unit area, which is nothing else
than the force per unit area. To wrap one’s head around this, it is useful to remember from classical
mechanics that

¢ Momentum per unit time is force.
¢ Force per unit area is pressure.

The momentum per unit time d¢, per unit frequency dv, per unit area dA, along all directions is
given by:

I
P:fﬂvdv:ff dv—cos?0dQ (5.1.16)
v vJQ C
4nl, U,
I, = ==Y 5.1.17
v 3 3 ( )
anl 4 U
U, =2 sz—ﬂlvdv —~ p== (5.1.18)
c v C 3

The relation that connects energy with pressure is called theequation of state (EOS).
¢ Proportionality constant of pressure and energy density is % which is a linear relation.
* Non-linear relation exists: in white dwarfs with proportionality of %

Further details on the EOS will be provided in the chapter on white dwarfs. For the moment it is
enough to mention that it exists.

Luminosity

The Luminosity is an intrinsic property of a celestial object. Let us assume that in an interval d¢
the total energy dE is irradiated by the star is perpendicular to the surface. Luminosity is the
total energy irradiated per unit of time (Power). The Specific Luminosity is then the total energy
irradiated per unit of time and frequency

_dE ergs

L=—" , [L]= , 5.1.19

a7 [L] s ( )
dE ergs

L,= Tidv [Ly]1= Ha (5.1.20)

66



Assuming that a star is a spherical, isotropic emitter (independent of 6 and ¢), with the radius R,
then on the surface the relation between L and F is given by:

L=F-4nr? (5.1.21)

Note also that, if no energy is lost or acquired during light propagation, we can find the distance
to the star using the relation of inverse square law

L

=— 5.1.22
4nD?’ ( )

where D is the distance to the object. This is important as if you can measure the flux and know
the distance you can measure the luminosity, or the distance if you know L.
Some additional facts:

* The luminosity of the Sun?is measured to be Lo, = 3.826-1026W

* The flux at Earth’s surface that originated from the Sun is named "solar constant" and is
determined to be S = 1.36%

Calculate Flux of Sun-like star is given at a distance d. Alternatively, the flux at the surface
is given if you know the radius.

5.2 Radiation transport

Intensity of the radiation can change during propagation due to absorption of particles of the beam
or to emission into the beam. In other words, when the beam traverses the medium, energy (let’s
focus on photons here) can be produced or it can be removed by absorption (photons disappear) or
scattering (photons are moved out of line of sight). Hence both, emissivity as well as absorption,
play an important role in the radiation transport.

NN \\%iﬁ\\t

Figure 5.2.1: Attenuation of radiation

The emissivity is defined as the energy radiated from a volume dV per unit of time d¢ and unit
of frequency dv in the elementary solid angle dQ. In general, the emissivity may depend on the
direction. For example, you could think of the direction of the B-field in the case of synchrotron

2These constants, along with many others and additional useful unit conversions can be found in the Appendix
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radiation or of jets. The emissivity is independent of the direction in the isotropic case. Isotropic
emissivity is due to emitters emitting isotropically (such as atoms, molecules, particles, etc.), or due
to a superposition of randomly distributed emitters.

We can express the Intensity I, that varies over a certain distance ds as it follows:

dl,
ds

—Jy—ad, (5.2.1)

where:
* ds = element of the medium
¢ ], = Intensity variation in the ds element
¢ J, = Emissivity
* «a, = Absorption coefficient

Equation 5.2.1 is an inhomogeneous differential equation of first order and can be solved with
standard and numerical methods. In the following we will look at two special cases that simplify
the solution.

Absorption only

When there is only absorption, we have J, =0, a, # 0 and equation 5.2.1 becomes

dIl
Y ——a, I, (5.2.2)
ds
dIl
Y ——a,ds. (5.2.3)
I,
Integrating the left-hand side yields
In(I,)=—-a,ds (5.2.4)
— I,(s) = Ige~ ™%, (5.2.5)
By defining
ayds—dt,(s)=a,ds, (5.2.6)

where 7 is defined as the optical depth. We finally obtain:
I(s)=Tpe ™, (5.2.7)

which may already be familiar to you as the BEER—-LAMBERT law. In words the above law tells us,
that the intensity after the beam has travelled a distance s, is the old intensity times 1/e for 7 = 1.
Optically thick medium 7 >> 1: low interaction probability.

Optically thin medium 7 << 1: high interaction probability.

Note that the optical depth 7 depends on the properties of medium and its size.

What does radiation transport mean and how is the intensity modified by emission and
absorption? Which is the equation of radiation transport?

2The concept of Bremsstrahlung is repeated in the Appendix.
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Emission only

Contrary to before, in the case of emission only we have J, # 0;a, = 0. Thus, the equation 5.2.1
takes the form

dl,
=dy. 5.2.8
ds v ( )
If the emissivity </ is assumed to be constant, then
I,=1,00)+dJ,(s)s. (5.2.9)

If the general radiation transport equation is divided by a, we get

dI J
—=—"-1,. (5.2.10)
dsa, ay
By defining S, = i—z, the above relation becomes
dI
Y=-8,-1,. (5.2.11)
dr,

We consider two cases:

o IfI,<S,— % > 0 : Specific Intensity I, is increasing towards the source function S,

o IfI],>S,— 353 < 0: Specific Intensity I, is decreasing towards the source function S,

If the system is in thermal equilibrium, the specific intensity doesn’t change: as much radiation is
emitted as is being absorbed. The solution in this case is given by the Planck spectrum, also known
as the black body spectrum. Black body radiation is radiation which is itself in thermal

equilibrium.

5.2.1 Black body Radiation

In chapter 3 we used the concept of a black body (from now on BB). A BB is an idealized object,
in a given thermal state characterized by a given temperature, in equilibrium. We can say that a
BB emits and absorbs electromagnetic radiation of all frequencies so that the temperature does not
change. The specific intensity observed by this object is the BB radiation. The name ’black body’
comes from the fact that it absorbs all incident EM radiation, but a BB is not necessarily black (see
e.g. the Sun, which can be approximated by a BB).

To put it in a nutshell, a BB is a body which absorbs perfectly and emits BB radiation.

In equilibrium, emission equals absorption so that S, = I, = B, which is the so-called Plank func-
tion. We will not derive the BB spectral intensity here. The derivation is based on two assump-
tions. First, we assume that photons are bosons. Therefore, more than one boson can occupy
each quantum state. Second, the photons are in thermodynamic equilibrium at all frequencies.
Therefore we want to know how many states pstates Per unit of volume, frequency, and solid angle
are possible. Then we calculate how many photons can stay in each state and what their energy is.
Eventually, we multiply this by the density of states and get the energy per unit volume, frequency,
and solid angle, i.e. the specific energy density u,. A more detailed explanation of this topic can be
found in the lecture notes of the module 'High Energy Astrophysics’.

The Planck spectrum is given as:

2nvd 1 ergs w
I,=B,(T)=————— ; I[By,(D)]= - 5.2.12
v AD) c2 e% -1 [B.(T)] scm2Hzsr m2Hzsr ( )
And as a function of wavelength we find
2hc? 1
B/(T)= ————, (5.2.13)
A% et —1

with A = { being the wavelength.
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Figure 5.2.2: The black body spectrum

As temperature increases, Intensity increases as well as the energy of the photons.
For example, in the case of 1 keV we get:

e v=24-10 Hz
e T=116-10K

As you can see in the figure above, changing the temperature strongly changes the intensity. The
peak is shifted toward higher energies. This tells you that the higher the temperature, the higher
the frequency (energy!) of the photons in the radiation field. The area under the curve increases.
This means that the number of photons populating each state v increases and photons of higher
energies are created, or if you prefer, higher frequency states are occupied.

What are the main features of the black body spectrum?

The Rayleigh-Jean and Wien’s laws are limits of Planck’s function from equation 5.2.13. In the
following we mention their main features.

Rayleigh-Jean Approximation

The Rayleigh-Jeans law is obtained for v < kT, that is for low frequencies:

22
[T - Lz kT (5.2.14)

c

It is a classical result, this equation approximates the ascending part of the spectrum very well. As
you can see, the Planck constant 2 does not appear in the spectrum anymore, confirming that at
low energies quantum effects can be neglected. However, if we want to calculate the total energy
Rayleigh Jean approximation leads to the so called 'UV catastrophe’. With 'UV catastrophe’ we
mean that the intensity diverges when integrated over all frequencies.
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Wien’s law
For higher energies (hv >> kT): Using Planck’s constant for quantised photons from before we

arrive at
2hV3

I, = —zexp( (5.2.15)
c

—hv)
kT )
It’s the description of the specific intensity of the BB radiation at the higher frequencies. It is a re-
sult of quantum theory, and A~ appears in the function. The spectrum drops rapidly after reaching
the maximum, because of the exponential roll off. We therefore avoid the ultraviolet catastrophe

and include the contribution to the flux of the highest energies.

Wien’s displacement law

Wien’s displacement law states that the radiation curve of a black body for different temperatures
will have its maximum at different wavelengths, which are inversely proportional to the tempera-
ture T'. That is,

0B
Y = 0= AV, = 2.82ET (5.2.16)
ov
0B
a—; =0— ApmaeT = 0.29¢cmK. (5.2.17)

The temperature of a star is measured using the spectrum and flux which depend on the temper-
ature. By integrating B,(T') over the solid angle for all frequencies, under the assumption that
the body is a spherical emitter, we can find the relation between flux and effective temperature:
Stefan-Boltzmann Equation

00 1
B = [~ BT = osaTl, (5.2.18)
0 T
with
5k4
0SB = T3 = 5.671-10 %ergsem 2K s (5.2.19)
And the flux takes the form
2n
F(T)=| Bcos(0)dQ=Bn=0s5Ts//- (5.2.20)
0

The Stefan-Boltzmann constant ogp is a result of quantum physics, since it includes the Planck’s
constant h. The flux is proportional to the fourth power of the temperature. Note the we have
introduced a new symbol: T,.rr. This stands for ’effective Temperature’. We obtain the effective
temperature by equating the flux F to that of a BB at the same temperature. The luminosity can
also be calculated for a spherically symmetric emitter using

L=47R*F =47R%cspT:,,, (5.2.21)

from which we can derive the actual radius of the star

L
R= | ———. (5.2.22)
47IO'SBTeff

In words: If we have the flux and luminosity we can find the radius of an object. (very important
result for radius of the white dwarfs! Because of low luminosity, but high temperatures it leads to
low radius)
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5.3 Magnitudes and Colours
5.3.1 Magnitudes

What is the magnitude of a star, or more in general a celestial object? In the following, we will
discuss the different types of magnitudes, as well as some other concepts connected to the magni-
tude. Let’s say that the magnitude is a parameter related to the brightness, apparent or absolute,
of a celestial object. The Greek astronomers Hipparchus (190-120 BC) and Ptolemy (170-100 BC)
were the first to compile comprehensive star catalogs in the western world. In the catalog, they
included positions and brightness of the stars. The units of brightness are defined ‘'magnitudes’, m,
expressed in mag. The scale of magnitudes goes from m = 1 for the brightest stars to m = 6 for the
faintest.

Apparent Magnitude

The scale uses an ’apparent’ magnitude, which depends on the star’s brightness and distance. The
apparent magnitude m is the magnitude that we can see/measure on Earth. It follows a logarithmic
scale. Bright stars have a low magnitude. Faint star have a high magnitude (faintest (m= 30
observed by HST), human eye lower limit = 6 mag). In modern times (1850) Pogson suggested a
scale in which a difference of 5 magnitudes corresponds exactly to a factor of 100 in flux (or equally
said in brightness). The change in one order of mag then corresponds to a factor of

2.512 =100, (5.3.1)

A star with two orders of magnitude = 100%® or 2.5122 with

F
mi—mg=-2.5log1o (—1) (5.3.2)
Fa
It can also be used as
F1 _0-040m1-m3) (5.3.3)
Fy

Venus at Hubble
Brightest Space

. Telescope
Sirius

Polaris

Naked Eye
Limit

=30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30
Apparent magnitude (m)

Figure 5.3.1: Apparent magnitudes scale of objects in the sky.
Often we consider the apparent magnitude at a defined wavelength (or frequency). This can be

expressed as:
Fﬂ. +00
m) = —2.5log10F— = —2.5log10[f F:{S)Ld/l] +c) (5.3.4)
10 0
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Object Apparent magnitude(mean values in visual)

Sun -27
Full moon -13
Venus -4.1
Jupiter -2.2
Sirius -1.5 (brightest star in the night sky)
Vega +0.03(definition of zero magnitude)
Saturn +0.5
Mars +0.7
Mercury +0.2
Andromeda/M31 +3.4
Ganymede +4.4(at best)
M33 +5.7(used as eye check)
Uranus +5.7
Neptune +7.8

Table 5.2: Examples of apparent magnitudes of astronomical objects

Absolute magnitude

The ’absolute’ magnitude is denoted with the capital letter M. This is the apparent magnitude a
star would have if it were located at a distance of 10 pc - normalised apparent magnitude. Thus,
the absolute magnitude is independent from the distance to the source.

F d
100(m—My5 _ Z10pe _ )2 (5.3.5)

F 10pc
The quantity (m -M) is called distance modulus and is defined as

d
10pc

m—M =5logio( ). (5.3.6)
In the case of the sun, the absolute magnitude is much smaller than the apparent magnitude,
because at 10pc the flux from the sun would be much smaller (since the Sun is located at 1 AU
=~ 4.85%pc).

100(M1—M2)/5 — L_l (5.3.7)

Ly

For two stars at the same distance the ratio between their fluxes is equal to the ratio between their
luminosities. The ratio between absolute magnitudes, corresponds to the ratio of the luminosities,
since they are at same distance of 10 pc.For the pulsating variables stars, the luminosity can be
determined without the knowledge of their distances, and from the known luminosity we can always
find their distance.

What are apparent and absolute magnitude? How are these quantities changed by extinc-
tion?

True magnitude

The true magnitude is is a measurement of the star’s luminosity. However, light can be absorbed
along its propagation path to Earth. In fact, space between the source and the observer is in general
not empty and contains the interstellar medium (ISM). We might have obscuration due to the ISM.
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There will be extinction of the radiation due to ISM absorption along the line of sight. This is then
called Interstellar extinction. Interstellar extinction changes the apparent magnitude of the star
and hence the distance modulus which must be corrected for.

my =M +5logy(d)—5+A,, (5.3.8)

where A =1,086T, is the interstellar extinction.

5.3.2 UBVRI Photometric System

A photometric system is a passband with sensitivity to the incident radiation. Sensitivity depends
on the filters used during the detection.

Effaktiva fotometrischa
Bandbraite

Band Zentrum  Brelte

a7 [

NOMiers DUrchiassigheit

438 23
545 88
838 138
797 140
| | |
300 400 500 @00 700 800 L 1000

wellenianae (nmi

Figure 5.3.2: The UBVRI bands

Filter =~ Color A.rf [nm] AA[nm]

U uv 365 66
B Blue 445 94
A% Visual 551 88
R Red 658 138
I IR 806 149

Table 5.3: Passbands for the UBVRI filters

Colour Index(C.I.)

The C.I. relates to the difference between two absolute magnitudes.
ClI=Mx-My X,Y :UBVRI (5.3.9)

X denotes the smaller wavelength while Y denotes the larger wavelength. The C.I. is related to the
photospheric temperature of the star (Planck’s Spectrum)
For example:

U-V=My-My (5.3.10)

Colour index gives an idea of the energy distribution of the star. As the brightness increases, mag-
nitude decreases hence the star with smaller B-V will be bluer than the star with larger B-V.
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Bolometric Correction(B.C)

Apparent and absolute magnitudes measured over ALL wavelengths from the star are defined as
bolometric magnitudes. They are then usually denoted as absolute bolometric magnitude (Mp,;)
and Apparent bolometric magnitude (m ;).

The bolometric correction (B.C.) is the difference between the star’s apparent bolometric magnitude
and its visual magnitude

B.C.=mp,—V =Mpy,; — My V =my). (5.3.11)

We can take the similar expression in all the bands using the relation between Flux and magni-
tudes.

+00
mj =—2.5logyg (j(; FAS,ld/l)+CA

oo (5.3.12)
U =-2.5logq (f FASUdﬂ)+CU
0
S is the sensitivity and C is a constant which depends on the chosen filters.
Bolometeric brightness:
+00
mpo; = —2.5logqg (f FudA|+Cpor (5.3.13)
0

’C’ was added so that the BC is negative for all stars. However, a few of the supergiants have posi-
tive BC but C remains unaltered. ’C’ can be calculated from the Sun’s magnitude: mg,, = —26.83.

Color excess

ISM alters the radiation due to various processes such as absorption, scattering or emissions which
is called extinction. In particular, the reddening of the light is due to scattering and absorption
by the ISM. Blue light is scattered more than red light which leads to reddening. Thus, the C.I
(B-V) increases.

d
V=MV+510g10(10 )+AV
dpc (5.3.14)
B=Mpg+51 +A
B Oglo(IOpC) B
Observed C.I:
B-V=Mgp-My+Ap-A
BTV T ABTAY (5.3.15)

B-V=B-V)+Epv

Ep_v is the color excess, that is, the difference between intrinsic C.I and observed C.I while (B-V'),
is an intrinsic color.
Extinction law:

Ay =3.1-Eg_vy (5.3.16)

What are colours in astronomy?
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Some belated changes from the International Astronomical Union (IAU)

* Resolution B2 defines: Mp,; =0 corresponds to Lo = 3.012-1028W
Ly is the zero point luminosity, such that, L,; o corresponds to My, o = 4.74

* Total solar irradiance measured at 1pc (1361Wm~2) corresponds to Mpol,0 = —26.832
¢ Following the above point bolometric magnitude of a star is redefined as:Mp,; = —2.5l0g102—;

 Luminosity in Watts: Ly = Lg - 10~04Meol

5.4 Spectral types and lines

Learning goals

¢ Why do we observe absorption and emission lines in a stars’ spectra? What is the
’physics’ of their origin?

* How are stars classified? Discuss the different classifications (Harvard, Yarkes...)
e What is a Hertzsprung Russel diagram? What is it’s meaning?

* How can we measure the radii, masses and magnetic fields of stars?

\ 7

Using a prism NEWTON obtained the Sun’s spectrum in 1666. In 1814 FRAUNHOFER observed
dark absorption lines in the Sun’s spectrum, labeling the most prominent from A ... L (see table
5.4) but including about 500 other lines.

Figure 5.4.1: The spectrum of the Sun

MA) Name Element

7593.30 A Oy
6867.19 B Oy
6562.18 C Ha
5895.14 D, Na
5889.97 D, Na
5183.63 by Mg
5172.70 bo Mg
5167.33 by Mg
4810+10 G CH,Fe
4226.74 g Ca
4110.75 h Ho
3968.49 H Ca
3933.68 K Ca
3820.44 L Fe
3734.87 M Fe
3581.21 N Fe

Table 5.4: Important spectral lines of some elements
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KIRCHHOFF and BUNSEN identified the Fraunhofer lines as absorption lines due to atomic and
molecular transitions in the Sun and Earth’s atmosphere. The spectra of stars are not simple black
body spectra but are characterized by dark absorption lines or bright emission lines. As we said,
the origin of the lines is due to the transitions of electrons between different, quantised energy
levels of atoms (or molecules). The centroid energies (or wavelengths) of the lines are a precise
feature of the elements in the gas, or in other words, each line identifies an element. Usually, the
spectroscopic nomenclature is used:

¢ I- neutral

¢ II- 1 fold-ionised
e III- 2 fold-ionised
* etc...

Following the studies by Bunsen and Kirchhoff on lines from elements, the Kirchhoff’s laws were
established:

¢ Hot and dense gas/object — continuum spectra, no dark line
¢ A hot diffused gas — emission lines
* A cool diffused gas in front of source of continuous spectra — dark absorption lines

Examples for a hot gas are the Sun’s corona, and the intracluster gas, filling clusters of Galaxies
(typically observed in the X-rays). The Sun’s photosphere is an example for a cold gas. Interest-
ingly, Helium was discovered spectroscopically in the spectrum of the Sun in 1868 and only later,
in 1895, was found on Earth.

It’s a result of quantum mechanics that the energy levels of electrons in the atoms are quantised
and characterized by quantum numbers. The set-up of which can be seen in figure 5.4.2. As an
example, n=1 corresponds to the ground level, while n=2 characterizes the first excited level. Elec-
trons transitions between these levels, that is between bound states, or between a bound state and
free state can occur. In the transition a quantum of light, a photon, is emitted or absorbed. More
specifically, a photon is emitted in the electron transition from a higher to a lower energy level. On
the contrary, a photon is absorbed when the electron makes a transition from a lower to a higher
energy level.

Depending on the initial level, we define different so called series, like the Lyman, Balmer, Paschen
series. The energy difference between bound states is given by AE:

1 1

-

2
Mfinal  "initial

AE =hv=-13.6 (5.4.1)

Where n refers to the energy quantum number of the level. The quantum number n=1 corresponds
to the ground level, while n=2 characterizes the first excited level.

2 i
: 1
1 Backett
Series
% 3
v Paschen
K Series
n
B0 2
E Eahmer
5] Series
Lyman Series
1

Figure 5.4.2: Series for the transition | Credit: Harper College
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* Lyman Series: Transition between higher energy level to ground states (n=1)

¢ Balmer series: Between higher energy level to n=2

Paschen series: Between higher energy level to n=3

Energies: Lyman>Balmer> Paschen

Lyman(UV); Balmer(Visible); Paschen(Infrared)

Wavelength, A

£ E E E E
Ec < c c =
=8 8 8- 38 5
or-N=2 o n=4 ©ni=3g n=6 n=5 m=4 ~

] g
Lyman Balmer series Paschen series
series mn=2 m=3

m=1

Figure 5.4.3: Transition lines.

Usually there are 4 possible transition types of the electron in the atom:

Bound-Bound: jump within bound states

Bound-Free: jump from a bound to a free state

Free-Bound: jump from a free to a bound state

Free-Free: scattering from a free to another free state

Observed positions of lines in the spectrum can change due to doppler effects, cosmological red-
shift, gravitational redshifts, but patterns remain same so we can still use the spectral classifi-
cation.

5.4.1 Spectral classification

To give you an idea of the complexity of spectra the figure below shows the spectra of the Sun and
of the star Vega

Sun T,,=5770 K

L U A

Vega J,~=9600 K

L

Waxelength

Figure 5.4.4: Spectra of the Sun(top) and the star Vega(bottom)
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The spectral types of the stars are defined through the appearance of the spectral lines.

Harvard Classification

This is a taxonomy developed at Harvard, according to the strength of the Hydrogen line absorption.
The sequence follows the temperature of the star. It reads as capitalised O BAF G KM, with O
being the hottest stars, M the coldest.

650 nm
——Hydrogen T T ™

30,000 K

' Helium !

20,000 K

10,000 K

1

- Iron ' Calcium —

T

odium— Magnesium¥ ~— Oxygen

| [ A

—— Oxygen

7000 K

w

6000 K

4000 K 1

B

3000 K

Figure 5.4.5: Spectra for O,B,A F,G,K,M type stars

Spectral type Temperature [K] Description
(0] 30,000 - 60,000 Hottest blue-white, ionised Atoms, strong Hell
B 10,000 - 30,000 Hot blue-white, neutral He, weak HI
A 7,500 - 10,000 White, H lines strongest, some ionised metals
F 6,000 - 7,500 Yellow-white H and ionised metals
G 5,000 - 6,000 Yellow, very strong Ca II, neutral and ionised metals
K 3,500 - 5,000 Cool Orange neutral metals
M 3,500 Cool Red Strong Molecular lines (TiO)

Table 5.5: Spectral types of stars - Harvard classification

It is defined as starting from hot stars to cold stars. O and B are early type stars; whereas, K and
M are said to be the late type stars. As a rule of thumb, one can say that H lines mean a hotter
star, whereas Na lines imply a cooler source. O stars are hottest stars, they are blue and have a
great fraction of ionised atoms, with strong He II lines. As we move to lower temperature, and in
the spectra towards the M types, more different elements are seen, such as oxygen, sodium etc.

Note that:

* In astronomy, everything heavier (more than 2 protons) than He is called a metal

* Subdivisions added in spectral classification ranging from 0 to 9, e.g. AO to A9.
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e L and T types are added late for super dim stars.

¢ L type have low temperatures, dark red with strong infrared emission and with molecular
absorption band.

¢ T types (Brown dwarf) are the coolest, infrared emission with strong methane band

"Hot and Cooler relative to Sun".

Morgan Keenan (MK- Classification)

This is a luminosity class, which is written in Roman numeral and is linked together with Harvard
classification.

Luminosity class Description Examples
0/Ia+ Hypergaints/extremely luminous Supergaints Cygnus OB2 - B3-4Ia+
Ia Luminous supergaints Eta Canis Majoris - B5Ia
Iab Intermediate-size luminous supergaints Gamma Cygni - F8Iab
Ib Less luminous supergaints Zeta Persei - B1Ib
II Bright gaints Beta Leporis - GOII
111 Normal Gaints Arcturus - KOIII
v Subgaints Gamma Cassiopeiae - B0.5IVpe
v Main-sequence stars(dwarfs) Achernar - B6Vep
sd or VI Subdwarfs HD 149382 - B5VI
D or VII White dwarfs van Maanen - DZ8

Table 5.6: Morgan-Keenan classification

White Dwarfs: DA, DB, DZ etc D- (degenerate)
Wolf-Rayet stars: WN, WC etc.

54.2 Hertzsprung-Russell diagram

In 1905 the Danish engineer Ejnar Hertzsprung (1873-1967) analyzed stars whose absolute mag-
nitudes and spectral types were accurately known. Hertzsprung published a paper reporting the
correlation between these two quantities: Magnitude and spectral types. A similar diagram was
independently developed by the U.S. astronomer Henry Norris Russell, which also included (and
named) the brightest stars as giants.

The Hertzsprung—Russell diagram (HRD) is a scatter plot of fundamental importance. It shows
the relation between absolute magnitude or luminosity and temperature or spectral types. To
understand why the diagram is so important, remember from equation 5.2.22, which links temper-
ature and luminosity and can be used to find the radius of the object

1 L
R= 2\ Zro (5.4.2)
Teff o

The HR diagram is shown in the figure below.
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Figure 5.4.6: Hertzsprung—Russell diagram | Credit: Mason m - Stefan V.
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Figure 5.4.7: Hertzsprung—Russell diagram with (B-V) on the x-axis and Luminosity on the y-axis.

The x axis of the HR diagram usually displays the spectral classification of the stars from O
to M. Using a more physical quantity, the temperature, or better the effective temperature Teff,
decreasing from right to left, is also often shown. On the y axis we plot the absolute magnitude
of the star, or the luminosity, typically expressed in solar luminosity units. Note that both Teff
and L are plotted on a logarithmic scale. The brightest, hottest stars can reach luminosity values
up to lOGLOand temperatures up to more than 40,000K. As we will see in the next chapters, the
HR diagram is fundamental to trace stellar evolution. In the HR diagram we observe different
branches:
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* Main sequence: from B to M types, lie diagonally in the HR diagram

* Giants: divided in giants and super giants, they are found in multiple evolution branches
above main sequence

* WDs: they are found in a branch below the main sequence

The main sequence contains roughly 95% of the detected stars.The giants are located above main
sequence, while the white dwarfs can be found below the main sequence. The evolution of a star,
i.e. its track in the HR diagram, is determined by its mass. The HR Diagram allows a comparison
of the observed phenomenology with predictions of theories about star interiors and evolution.

Note also that in the (log Tefr, log L) diagram, parallel lines correspond to a given radius. We
have:

Type Radii
Main sequence 0.1-20 R
Red Giant 10-200 R
Super Giants  >1000 R
White Dwarf 1/100 R

Table 5.7: Radii of different classes of stars

The Mass-Luminosity relationship

The radius of a star can be measured from L and T. It is however very difficult to measure it directly.
This can be done with very few stars and only if we have extremely powerful telescopes. As we will
see later, we might also use eclipsing binaries.

@ Mercury < Mars < Venus < Earth Earth < Neptune < Uranus < Saturn < Jupiter

*

Figure 5.4.8: Size comparison of different stars.
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Star Radius

Sun 6.96x10™ cm

Antares =500k
Aldebaran ~40Rp
Capella ~15Rp
Spica =~TRo
Sirius A =~ 2R
Jupiter(planet) =0.1Rq

Sirius B = 0.01Rp

Table 5.8: Relative radii of stars with respect to the Sun.

We can measure stellar mass using mass-luminosity relation, that is

b
L (M* ) , (5.4.3)

Lo “\Mg
where b is called the Eddington limit, a and b depend on the masses of the stars.
Extra points to note:
* We can measure the magnetic field of the star using the Zeeman spectrum of the star.

¢ Magnetic field of Sun spot: 4000G interior and ~ 1G on the surface

¢ Zeeman-Doppler imaging: Tomography technique to study periodic change in Zeeman signa-
tures as a function of stellar rotation.

83



Chapter 6

Binaries

Abstract.

Introduction to the different classes of binaries, their constituents and their visual char-
acteristics. In more detail the different classes will be explained.

Keywords: Binaries, HMXB, LMXB, spectroscopic, eclipse

Learning goals

* How are binaries classified

¢ What are optical/visual binaries

* What are astrometric/spectroscopic binaries
* Determine the mass of spectroscopic binaries

* What are eclipsing binaries

More than 50% of stars belong to a multi body system orbiting around a common center of mass.
Via the orbital parameters one can deduce the other physical properties such as the mass m. E.g.
the compact object emission (X-ray) of a body with a mass estimate of > 3Me might be a Black Hole.

6.1 Classification

Binary system are classified based on their observational features. Here is a short overview of the
classes of binaries that will be discussed in this chapter.

¢ Optical double: Two stars are very close along the line of sight, however not gravitationally
bound. They are not actual binaries.

* Visual binaries: Both stars can be resolved independently. If the period isn’t too long,
the motion of the orbit can be observed. There are approximately 100 000 known. If the
angular separation is known and the distance can be calculated, the linear separation can be
calculated. The limit for such a observation is 0.1" (terrestrial) and 0.001" (space). -> (See
chapter 3.)
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Figure 6.2.1: On the left: distance of star 1 and star 2 to the center of mess. On the right: The
orbits of the stars and their center of mass.

¢ Astrometric binaries: If one of the two stars is much brighter than its companion, the
companion can’t be seen. However it is visible via its gravitational influence. Then main star
"oscillates" radially and produces a Doppler shift in its spectra.

¢ Ecplipsing binaries: Inclination is almost 90%. The orbit plane is along the line of sight,
which means that one star passes in front of the other. This give an imprint on the light
curve.

¢ Spectrum binary: it is a system with two superimposed, independent, discernible spec-
tra. If the stars have a radial velocity component a periodic blue- and red-shift of the lines
(Doppler effect). Note that when the lines of one star are red shifted, the lines of the other
star will be blue shifted.

* Spectroscopic binaries: Only one spectrum is observed. This can be done if the period is
short and the radial velocity is along the line of sight a periodic shift of the spectral lines can
be observed.

Another way of binary systems is by their distances to each other and their rotaion periode. Wide
systems are usually defined with distances between 10 AU up to 1000 AU and periods of 10 to 1000
years. For tight system the distance for the companions can be from 1 AU down to 1R, with periods
from 1 year to a few minutes. The fastest orbital periode observed so far was 5.4 minutes in the
system (Which one is it?) that consists of two white dwarfs.

6.2 Visual binaries

Visual binaries can be resolved as independetly and limits of their angular seperation are around
0.1” for earth-bound instruments and down to 0.001” when using intruments in space.
In general, there are two possibly reasons why an elliptic orbit is observed.

a) The eccentricity of the orbit is not zero, € # 0

or

b) the orbit is inclinded with respect to our line of sight

If the distance d is known, the observable semiaxis a with angle a isa =d -sina.

When the orbits of the binary system are perpendicular to our line of sight - meaning we have a
face on view of the system - the absolut postion of both stars can be measured. Semimajor axis a1
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e Abb. 10.4. Die scheinbaren Bahnen vom Sirius und ssinem Begleiser

am Himmel

Figure 6.3.1: Movment of Sirius and its companion in night sky.

and a9 of the two orbits can be determined as follows.
a=ai+as (6.2.1)

is the semimajor axis of the orbit of the reduced mass and center of mass is:

mi a
mi-a1=mg-as , 2 (6.2.2)
mo aj
If the distance of the binary system is known, then the angles subtended by the semimajor axes
are:

=g, M (6.2.3)

which means that even without the distance we can get the mass ratio. Combining the third Kepler

law
(a1+0a2)®  G(my+mg)

p2 472
and Eq. 6.2.3 we can get the total mass if we know the distance.

(6.2.4)

6.2.1 Inclined orbits

The orbit can be inclined of an angle i with respect to the plan of the sky. The apparent angles are

ay= a1 costi) , dg= a2 cosi) ) = ; (6.2.5)
d d mg di
In combination with Eq. 6.2.4 we get
4n? @ d g4
+ - — . th X =1+ a 6.2.6
(m1+mg) G P2 (cos(i)) , wi a=dai+dg ( )

However we need to know i, which is often not given.

6.3 Astrometric binaries

A well known example is Sirius with it’s white dwarf companion. Figure 6.3.1 shows the paths of
Sirius A and its white dwarf companion Sirius B between 1880 and 1950. In Table ?? we can see
the compaison of the two stars and see that the Sirius B is a lot dimmer not just than Sirius A but
also a lot less luminous than the Sun althought they are about the mass. There are =~ 20 confirmed
astrometric binaries and within 5 pc, 20% of all stars have unseen companions.
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Object ‘ Luminosity [Le] ‘ Mass [Me]
Sirius A | 23.5 2.3

Sirius B | 0.03 1.053

Table 6.1: Comparison of Sirius A & Sirius B. Almost same mass but far greater luminosity for
Sirius A. Sirius B is the first discovered white dwarf which commonly have low L but high T.

He HE  Hy Hj3 Star at rest Hex
He Hi  Hy HS3 Star moving away Hax

He HF  Hy HS Star moving towards us Ha

Figure 6.4.1: Shift of Hydrogen lines due to motion of the source

6.4 Spectroscopic Binaries

In spectroscopic binaries shifted absorption lines can be seen in the spectrum like in ??. The lines
are shifted because of the motion of the source. With the difference in wavelength we can calculate
the radial velocity of the source ( see Equation 6.4.1).

AL _ Urad

1 p (6.4.1)

Alternative observation: Radial velocity curves for the case of two spectra. K1, K2 are the half
velocity amplitudes: these are measured values. They are only sinusoidal if the orbits are circular.
Ellipticities induce a change of the function shape. he radial velocity of the two stars, can be
determined from the Doppler effect. We can only measure the radial velocity along the line of sight
circular orbits:

O=wt , w= 2—” (6.4.2)
p
We observe
vy = vcecos(wt) (6.4.3)
and in dependency of i we obtain
vy = veos(wt)sin(i) (6.4.4)
2 2
Ki= ’;“1 sini) , Kz= 22 gin(i) (6.4.5)
With
aisin(i) = . (6.4.6)
2naq
we get
mi as Kz
L _Te_ e 6.4.7
my aj Kl ( )
Again from Eq. 6.2.6 we get
.1 \3 p 3
(m1+mg)-sin(i)° = —— - (K1 +K3) (6.4.8)
221G
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spectral lines of stars split by Doppler effect

YYy Yy ‘I’l"l"‘f Yy Y ‘i"f il’
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merged spectral lines

Figure 6.4.2: Spectrum with spilt absorption lines

Again we need to know i. For a single line spectroscopy we are left with

Ky=K; (6.4.9)
mo
Combining Eq.6.4.8 and Eq.6.4.9 we get
P K13 mi.g
4 - . 1+ =2 6.4.10
(mitm2) =06 sinep T my (6.4.10)

This gives us the Mass equation which sets a lower limit on the mass for a second body, if we only
know one of the two.

. m2 o . .3 P _ 3
f(m)—(m1+m2) sin(i)° = 27TGK1 (6.4.11)

The lower limit is given by fim) < mgy. This can be especially useful for estimating the mass of
non-emitting stars like a potential Black Hole. Usually sin(i)® is averaged at 0.589 or % in order
to calculate the mass function. Even if both radial velocities are measurable, it is not possible to
measure the mass if we don‘t know i, the inclination angle.

6.5 Eclipsing binaries

When binaries pass in front or behind one another, a dip in the luminosity can be detected. In
Figure 6.5.1 two types of escipses are shown. When the obsects are similar in size, the eclipse is
often patial, that means none of the stars are fully covered by the other. For binaries with different
sizes, total coverage is possible. The light curve shows a big dip, if the secondary object passes in
front of the primary. A second smaller dip is provided when the secondary object disappears behind
the primary.

When a fourier transformation is applied to the light curve a power spectrum is attained which will
peak at the frequencies which contribute to the variability of the system. Partial or total occultation
provides a good estimate of sin i = 1 at i about 90° (even if i would be 75° the error on sin(i) would
only be of the 10%). This allows an estimate of the masses when both spectra are observed. An
estimate of the radii of the binary members is possible.

6.5.1 Estimate of the radii in eclipsing binaries

If we know the time of the first contact t; and of the last contact t4, and of the minimum light tg at
the ingress, and at the egress t3 plus the relative velocity of the stars (from Doppler effect).

D+d=v-(t4—1t1) (6.5.1)

88



a Famial echpse

Tiee 1o
oroms dink
of larpe wowr

T =——

> ook

Figure 6.5.1: Partial occultation on top and total occultation on the bottom. Time on the x-axis and
luminosity on the y axis.
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Figure 6.6.1: Zeeman effect

D-d=v-(t3—1t2) (6.5.2)

6.6 Measuring Magnatic fields of stars

The Zeeman effect is a quantummechanical effect that will not be discussed in full depth here,
however it is useful for determining the strength of the magnitic field of a star. The Zeeman ef-

fect casues spectral lines to split into multiple lines of polarised light and the energy difference
AAbetween these Zeeman lines depands on the strength of the magnatic field B.

2
Al = A“gBe
4rm.c?

=4.7-105A%gB

(6.6.1)
With Lande factor g=+ 1
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Chapter 7

Stellar atmospheres

Abstract. Introduction to the different layers of the suns interior and its atmosphere.
In doing so, this chapter will also cover the more general radiation transport equation.
Lastly it will tackle the suns magnetic field and the effects that come with it.

Keywords: Atmosphere, radiation, magnetic field, flares, CME

Learning goals

* What is the stellar atmosphere, why is it important
* How are they modelled, what is its temperature

* what is limb darkening

* what contributes to the absorption

¢ which layers constitute the atmosphere

* what is a solar cycle

It is an outermost, tenuous layer, from which the observed radiative flux emerges and/or is it
reprocessed.
Stellar interior: Cannot be directly accessed (except neutrinos)
Photosphere: Visible “surface”, temperature decreases with height.
Outer atmosphere: Temperature increases again in this region.

Why atmosphere?

pt They are the only source of information we can analyse/measure Quantitative spectrum analysis:
“Individuality” of a star based on the abundance of the chemical component it has. We can use it
for determining the atmospheric parameters.

Evolutionary state of the stellar classes: Conclude the structure and evolution theory by com-
parison and analysis of stellar parameters.

Elemental abundance and astro-chemistry, Ideal physics laboratory: Fundamental research in
plasma physics, atomic, hydrodynamics, thermodynamics etc.

Stellar atmospheres are geometrically thin (<1 %)
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Assumption: 1) Plane parallel approximation (1D), variables such as temperature, particle den-
sities etc depends only on height. 2) Open system: Equilibrium thermodynamics fails but approx.

Modelling atmosphere

Three atmospheric parameters characterises plasma slab (atmosphere):
¢ Effective temp T,rf
e Surface gravity g = GM/R?
¢ Chemical compositions
The mean intensity at the inner boundary is the Planck spectrum: F = ¢T* The plasma slab forms
the emerging stellar spectrum from the Planck spectrum at the inner boundary
All interactions between radiation and matters need to be considered.
7.0.1 Modelling the photosphere
Modelling the photosphere based on:
¢ Intenstiy

¢ Radiation Transport

* Emerging specific intensity

Radiation Transport Equation

We know from the earlier concepts that we can write relation for intensity as follows:
dE =1,cos0dAdtdvdQ) (7.0.1)

Plane parallel geometry:
0 is the angle between z-axis perpendicular to the geometrical depth (t) and the ray of light that is
emerging from the stellar interior.

dt =—-cosfOds (7.0.2)

and optical depth is given as: d7 = a,ds Equation for radiation transport

I,  dI,

- 0 7.0.3
ds  dt (7.03)
dI
Y g —al, (7.0.4)
ds
d
dr, = aydt — dt = 22 (7.0.5)
ay
from the equation 7.0.3 and 7.0.4:
dI
- d—tvcosﬁ —J,—ayl,, (7.0.6)

which can be brought into the form of the Radiation Transport Equation:

Radiation Transport Equation (RTE)

I J
Y cos60=I,-—=1,-8, (7.0.7)
drty ay,
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Define z = 7/cosf and multiply RTE with ™2 and then integrating it over limits from 0 to 7

T !
IV,O — Ive—r/cosﬁ +f S.e " /cosBdT/ (7.0.8)
0

v
cos0

I, o : Emerging intensity at the surface of the star

I, : Initial intensity at the bottom layer of the star

e ¢ 7/cos0 : Extinction in the layer

* foz 0139 S,e 7700 47’ . Radiation part that traverses after the extinction

for semi infinite atmosphere:

7,=00: I,e /cos0 =0—>IV(O)=f

1 /
—— 8, e Teos0 gy (7.0.9)
o cosf

Depending on the source function, optical depth contributes to the radiation but this contribution
diminishes by the factor of e~7/¢0s¢

© . 1,(0,0)
S-e*dx=Sx=1)——>=8S(@=cos(@=0)=1) (7.0.10)
0

Equation 7.0.10 is Eddington-Barbier Approximation.
Limb darkening

It is an optical effect, where the central part of the star looks brighter than the limbs or edge of
the star: this is due to the fact that the observer observing the star (Sun) from the Earth is looking
vertically downwards making an angle 6 with the edge of the Sun, as a result of which an observer
sees lower temperature at an optical depth of about 2/3, which appears as though the edges are
darker than the body of the Sun. Assuming that the Source function is linear:

S,=ay,+b,1, then: 1,(0,cos0)=a,+by,cosl (7.0.11)

if6=0: I,=a,+b,
if0=n/2: I,=a,

Moments of Specific Intensity
pt To understand the properties of the atmosphere, we compute 'moments of specific intensity’ using

cosf =u
Oth moment: Mean intensity

1+l
Jvzgﬁl I,du (7.0.12)
1st moment: Eddington Flux
Hvzéf:;llvudu (7.0.13)
2nd moment: Radiation pressure
K, = %f_zllvuzd,u (7.0.14)

We know that : F, =1, cos0dQ)

F;, :f I, udQ
Q
cosO =y — du/dl =—-sinb (7.0.15)

+1

F. =2n I,udu
-1
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For Plane Parallel atmosphere with 7,(0,u)=a,+bypuand S, =a, +b,7,

+1

F,(0)=2n A L,(0)pdp

+1 2 7.0.16
=27tf0 (av+bv,u),udu=n(av+§bv) ( )

=n8S,(r, =2/3)
Assumptions:
¢ Thermodynamic Equilibrium: S, =B,
* Gray atmosphere 7 = 7, i.e. extinction has no dependency on wavelength

* Star has a Black body like spectrum with T' = T, zr(1 = 2/3)

o .
s 3
‘TE %
= b
< =5
o T o
o o8
S &

oL | 1 ! 1 ! | ! | 1 | l 1 | 56
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Figure 7.0.1: Measured spectrum of the Sun

Apart from radiative transport, energy transport mechanism includes convection (envelope) and
conduction(interior/core) in the star.

Assuming that energy transport is purely due to radiation transport implies that the energy flux
remains constant. Each layer of the star can be assumed to be in the local thermodynamic equilib-
rium.

dF o0
@) =0—-F =f F.,dv =constant (7.0.17)
dr 0
Integrating radiation transport equation and using Oth moment.
dF
© _ 4n,-8,)=0 (7.0.18)
dt
LTE resembles BB radiation B(T")
os8Tyy
Jy= fB(T)dv =—"7 (7.0.19)
7

Under assumption that the layer is in LTE with grey atmosphere and isotropic radiation: Edding-
ton approximation

Eddington approximation

3 . 2
Ty =0s8Tepp(T+3) (7.0.20)
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at 7 =2/3: T =T,

temperature profile of the Sun

Assuming LTE & in grey approximation
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Figure 7.0.2: Temperature profile of the Sun

Absorption coefficient

Assumption: Absorption coefficient is independent of frequency, which is not a realistic assumption,
but by considering the mean of the weighted absorption coefficient, result can be approximated: so
called Rosseland mean True absorption consists of various ways of contribution from processes
such as bound-bound, bound-free, free-free, scattering etc.

Ay =Aypbp T+ Aypf t Ay rrt+ Qyse (7.0.21)

Plasma in the star consists of various elements in different states of ionisation. To effectively
calculate the absorption coefficient we must know about:

¢ Population densities of ionisation stages and energy levels
¢ Cross-section
¢ Composition of the elements present/metallicity

Statistical equilibrium: For each atomic level, population and depopulation rate is equal.

Bound-free absorption coefficient of Hydrogen

Bound-free a;s involves absorption that leads to the ionisation of an atom
* apr decreases as the wavelength in the series decreases.
* apy increases with the increased number of lower energy level (n)

¢ Edge in the absorption coefficient is produced due to threshold energy that is required for the
ionisation.

Unlike in the Grey-atmosphere approximation, characteristic edges are seen in the spectrum as
discontinuities in the absorption coefficient.
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Metallicity

In astrophysics, every element heavier than He is called as a metal. Metallicity is calculated as a
relative abundance of metals in the star compared to the abundance of H and defined relative to
the abundance of that metal in the Sun.

X X

[— =log— —log — (7.0.22)

H H "°Hg

By definition,
. [%] >0 High metallicity

¢ [%] <0  Low metallicity

7.0.2 Outer atmosphere of the Sun

When we observe the Sun visually, it appears as though there is a very abrupt and clear edge
to it, but an actual “surface” does not exist; rather, what we are seeing is a region where the
solar atmosphere is OPTICALLY THIN and photons originating from that level travel and travels
through space. Since some photons can always escape when the optical depth is greater than unity
while others may be absorbed when the optical depth is less than unity but we know the odds of a
photon leaving the solar atmosphere diminish rapidly as the optical depth increases.

The Sun’s atmosphere changes from being optically thin to optically thick in only about 600
km. This is a relatively small distance (about 0.09 % of the Sun’s radius) and this is what gives an
“edge” of the Sun its sharp appearance.

Structure
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Figure 7.0.3: Different layers of the Sun

Photosphere

The region where optical photon otiginate from is called as the photosphere. The limit for the
base of the photosphere is quite arbitrary, hence it is sometimes defined to be 100 km below the
level where the optical depth at a wavelength of 500 nm is unity. At this depth, 7509 = 23.6 and the
temperature is approximately 9400 K Temperature of photosphere decreases as we move outwards,
the minimum temperature defines the ‘top’ of photosphere.

Granulation

Base of photosphere: characterised by the “boiling” patchwork of bright and dark regions from
the top of convection zone protruding deep into photosphere. Bright cells are vertically rising hot
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convective bubbles, energy is released via photons whcih results into cooled, darker gas that sinks
back giving the dark outer lining to the granulae. Velocity: 1km/s Brightness: 1 % temperature
difference at 7 =1 =500Kelvin

Tachocline
Boundary layer between the radiative interior core and conductive outer zone. This is the where

differential rotation of the sun converges with the latitude, it is believed that tachocline region is
the likely source of the magnetic field of the Sun.

The Sun
480 1y
Oﬂ
460 | 159 ~
440 307
é‘
= 420+ B
§ 45°
a 400 g b
)
o
380k E Ny
Radiation | Convection 600‘
360 F Zone " | zone 1
PR T | P B P L

PRI Y " PRI B T
0.50 0.60 0.70 080 090 1.00
/R

Figure 7.0.4: Differential rotation of the Sun wrt angular frequency

Outer atmospheres

Some important points to note on the outer atmosphere:
® Quter atmosphere: Corona and Chromosphere
* Gases are not in the hydrostatic equilibrium.
¢ Radiation field do not have local thermodynamic equilibrium
* Magnetic field is not neglectable.
* Spatially and temporally variable emissions take place in the atmosphere
¢ MHD is coupled with non-LTE radiation transport

Chromosphere

Lies above the photosphere, in this region the hydrogen is completely ionised. Particle density de-
creasese from 1017 to 109%™ Visible photon emission from this layer is not normally seen due to
the bright solar disk, but it can be observed around the limbs at the beginning and towards the end

of the total solar eclipse, this is called as flash spectrum.

Corona
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Corona extends up to the space and does not have well defined boundary, the temperature reaches
up to 2 million Kelvin. Coronal heating problem: Temperature of the corona is very high and
while there is no definite answer, possible explanation lies in the magnetic fields. Possible ex-
planations include, Alfven waves (Transverse plasma waves under MHD) or small scale magnetic
reconnection (nano-flares)
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Figure 7.0.5: Temperature and mass density profile of the upper atmosphere of the sun

Solar wind

Stream of charged particle coming from the sun due to different solar activities. Mainly constitute
of electron, protons and He nuclei.

* Velocity: = 800km/s at pole and =~ 300km/s at equator

* Density: 5-10 particle per cm ™3

* Mass loss due to solar wind, 2—-3- Mg/,

7.0.3 Activity
Sun Spots

Sun spots are dark spots in the optical region with colder compared to the rest of the surface. They
are bright in the UV and X ray. They are periodic with minimum and maximum solar cycle that
last for about 11 years each. They have strong and active magnetic field which when loops back
into the solar interior creates bright arc like structure. Plot of magnetic field with time is known
as butterfly diagramme because of its wing-like appearance.

Solar Dynamo

Magnetic dynamo theory explains the process of solar dynamo that generates the magnetic field in
the sun. Magnetic fields in the sun is axissymetric. According to the theory, the magnetic fields
are stored in the gas, with differential rotation of the sun, they are stretched making the poloidal
magnetic lines into toroidal known as "wrapping around the sun". This twist leads the magnetic
lines to rise to the solar surface, creating the sunspots. Initially, the magnetic "ropes" are formed
at higher latitude (Solar minimum) but due to the differential rotation, they move to the lower
latitude, creating more sunspots (solar maximum) with opposite polarities.
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Figure 7.0.6: Magnetic dynamo theory

Coronal holes

Less dense and colder than the corona. Visible as dark regions in X-rays, it evolves with solar cycle.
Constitute of open magnetic field through which solar winds escape. Origins of geomagnetic storms
during solar minimum cycle.

Solar prominence

Nearly the size of the Earth. Also known as proturberance, filaments. It is a loop of plasma that
follows the magnetic field lines. Erupting prominence: Prominence that are unstable and burst
outwards, releasing plasma. Lasts from months to days.

Flares and CME

Flares are eruptive event that releases very high energy. CME is the event that releases very highly
charged particle into the space.
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