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1 Motivation
The goal is to obtain an expression for the refraction angle of (monochromatic)
light that bends not only through gravity governed by general relativity, but also
by a medium that surrounds the body of interest. In other words, we elaborate on
classical light diffraction under the laws of general relativity, i.e. in curved space-
time. We expect the refraction angle to depend on material dependent quantities,
which can then be determined by measurements, yielding information about stel-
lar or planetary atmospheres and their composition.

2 Derivation
We choose the weak field approximation, that is

gµν = ηµν + hµν, (2.1)

where gµν is the metric tensor, ηµν the one of flat Minkwoski space and hµν a
small perturbation, which means that

hµν << ηµν . (2.2)

We use the Schwarzschild metric

ds2 =
(
1− β

r

)
c2dt2 −

(
1+ β

r

)
dl2, (2.3)

where c denotes the speed of light in vacuum, β = 2GM
c2 is the Schwarzschild

radius, dl =
√

dx2 + d y2 + dz2, and r =
√

x2 + y2 + z2.
We want to look at a monochromatic light beam, thus we get null geodesics

ds2 = 0. (2.4)

Combining this with equation 2.3 and rearranging yields

dl
dt

= c

√√√√1− β
r

1+ β
r

. (2.5)
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So far we have only repeated the calculations of https://arxiv.org/pdf/1709.
04127.pdf section 2.
If we now assume that the light traveling around the center of mass is not only
propagating through vacuum but rather through matter with a refraction index
n, it stands to reason to modify the last equation in the following way

v = dl
dt

= c
n

√√√√1− β
r

1+ β
r

. (2.6)

This specific modification can also be justified by the classical limit in which the
square root becomes simply 1 and we obtain the well known relation v = c

n .
Without limiting the generality we can choose some coordinates in a useful way
such that the calculation for the deflection angle will be more easy. Thus we
look only at the z = 0 plane and name the impact parameter y = b at x = 0. The
following figure illustrates the definitions.

Figure 2.1: Schematic diagram

All in all we get by using the formula derived by Einstein for the deflection
angle using Fermat’s principle

Θ = 1
c

∫ +∞

−∞

(
dv
d y

)∣∣∣
y=b

dx (2.7)

However, an exact determination of the value of 2.7 is impossible. But for celes-
tial bodies the parameter β

r becomes very small and so we can approximate

1

1 + β
r

≈ 1 − β

r
. (2.8)
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For now the refraction index did not play any role. We shall treat two cases
here, where one is more relevant than the other.

2.1 Barometric density
In order to introduce the refraction index n, we first need the link between the
matter density and the refraction index since the matter density of atmospheres
is mostly well known. For that we use the Clausius-Mossotti equation that reads

P = εr −1
εr +2

Mm

ρ
, (2.9)

where P denotes the polarizability of the material, εr = |n|2 the dielectric func-
tion, Mm the molar mass and ρ the matter density. Rearranging previous relation
yields

n =±i

√
Mm +2Pρ
Pρ−Mm

. (2.10)

Thus, we have expressed the refraction index by the matter density and only by
material dependent constants. For better handiness we use the Taylor expansion
for the matter density which is given by

ρ(r)= ρ0e−
r

Hp , (2.11)

where ρ0 is the density at the surface of the object and Hp is the scalar height;
both quantities are constants. Furthermore, r denotes again the coordinate dis-
tance from the center of the body. Now, by making the justified assumption that
e−

r
Hp << 3Pρ0

2Mm
, equation (2.10) becomes

1
n
= 1−αe−

r
Hp + o(ρ2), (2.12)

where we defined the matter dependent constant α= 3Pρ0
2Mm

. We already inverted
the refraction index as this is the quantity that is relevant for the velocity and
therefore ultimately for the refraction angle.

Now we are able to calculate the refraction angle given by the previous relation
(2.3):

Θ = 1
c

∫ +∞

−∞

(
dv
d y

)∣∣∣
y=b

dx (2.13)

≈ d
d y

∫ +∞

−∞
dx

(
1−αe−

r
Hp

)(
1− β

r

)∣∣∣
y=b

(2.14)

= d
d y

∫ +∞

−∞
dx

(
1− β

r
−αe−

r
Hp +β

αe−
r

Hp

r

)∣∣∣
y=b

(2.15)

(2.16)
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The first two terms are the unperturbed refraction angle, i.e. without any medium
and yields the known result Θ1 = 2β

b . The other terms read

∆Ω=α
d

d y

∫ +∞

−∞
dx

(
e−

r
Hp +β

αe−
r

Hp

r

)∣∣∣
y=b

. (2.17)

Both terms are even functions of x, thus

∆Ω= 2α
d

d y

∫ +∞

0
dx

(
e−

r
Hp +β

αe−
r

Hp

r

)
(2.18)

Also, both integrals are analytically solvable by using the the substitution x =
ycosh(t). We therefore have the relation

dx e−
p

x2+y2
Hp = dt ycosh(t)e−y cosh(t)

Hp . (2.19)

Hence, by using the standard integral∫ +∞

0
dte−y cosh(t)

Hp cosh(νt)= Jν(z), (2.20)

where Jν(z) denotes the Bessel function, the first term becomes∫ +∞

0
dx e−

r
Hp = yJ1

(
y

Hp

)
. (2.21)

In a similar fashion we obtain the second term of (2.18) as∫ +∞

0
dx

e−
r

Hp

r
= J0

(
y

Hp

)
. (2.22)

By collecting all terms we end up with the final result

∆Ω= 2α
d

d y

(
yJ1

(
y

Hp

)
+βJ0

(
y

Hp

))∣∣∣
y=b

. (2.23)

In the limit of sufficiently small b
Hp

, this can be expanded and the derivative can
be applied, i.e.

Θ=α
b

Hp

(
2− β

Hp

)
+ o

(
b

Hp

)2
, (2.24)

yielding the total refraction angle

Θ=Θ1 +∆Θ= 2β
b +α b

Hp

(
2− β

Hp

)
. (2.25)

Just like we expected, the correction depends on the material constant α, con-
taining the polarizability, molecular mass and also on the surface matter density.
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2.2 Polytropes
In general, one can derive the correction angle for a polytropic gas, which is often
used in astronomical models. It is defined by the relation

P = Kρ
γ+1
γ , (2.26)

where P stands for the pressure and K for the polytropic constant.

To illsutrate this, let us consider a refraction index of a polytropic gas with γ= 1.
The relevant equation that has to be considered is the stellar structure equation

dP
dr

=−Gmρ

Kr2 . (2.27)

Solving this simple differential equation for the case γ= 1, we obtain that ρ∝ 1
r .

Further, we simplify this consideration by stating that n ∝ ρ(r). Moreover, we
assume it to be slightly larger than the one of vacuum nvac = 1 and we want it to
depend on the distance r to the center

n(r) = 1 + n0

r
, (2.28)

where n0 is a medium dependent constant. We see that for large distances from
the body r >> 1 the refraction index n(r) becomes approximately the one of vac-
uum as it should be.
In the same manner as β

r we approximate the refraction index by arguing that
n0
r is small. This is reasonable because for most bodies of interest, for instance

stars, the corona (not the virus) density usually falls off very fast with distance.
Therefore

1
1 + n0

r
≈ 1 − n0

r
. (2.29)

Therefore by combining equation 2.7 with the last two approximations we obtain
by using the product rule

Θ = 1
c

∫ +∞

−∞

[
d

d y

(
c
(
1− n0

r

)(
1− β

r

))]∣∣∣
y=b

dx (2.30)

=
∫ +∞

−∞

[(
n0b

(x2 +b2)
3
2

)(
1 − β

(x2 +b2)
1
2

)
+

(
1 − n0

(x2 +b2)
1
2

)(
βb

(x2 +b2)
3
2

)]
dx

(2.31)

=
∫ +∞

−∞

[
n0b

(x2 +b2)
3
2
− βn0b

(x2 +b2)2
+ βb

(x2 +b2)
3
2
− βn0b

(x2 +b2)2

]
dx (2.32)

=
∫ +∞

−∞

[
b(β + n0)

(x2 +b2)
3
2
− 2βn0b

(x2 +b2)2

]
dx. (2.33)
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Now by substituting we obtain

ξ = x
b

(2.34)

Θ =
∫ +∞

−∞

[
β + n0

b(ξ2 +1)
3
2
− 2βn0

b2(ξ2 +1)2

]∣∣∣
y=b

dξ (2.35)

= (2b−πβ)n0

b2 + 2βb
b2 , (2.36)

which results in

Θ= 2β
b + (2b−πβ)n0

b2 . (2.37)

We can see the deflection angle without a medium, i.e. n0 = 0 yields the well
known relation

Θ0 = 2β
b

. (2.38)

We plug in some dummie values

M =M¯ (2.39)

b =R¯ (2.40)

n0 =1, (2.41)

where it is striking that the extra term n0
r is indeed very small, thus fulfilling

our assumption. We obtain

Θ ≈ 8.8487 ·10−6, (2.42)

while for n0 = 0 we get the famous angle

Θ ≈ 8.8484 ·10−6. (2.43)

Hence only an optically thin medium with n(r) = 1 + n0
r with n0

r << 1 around a
massive body already yields corrections. If we plug in optically thicker media we
obtain even more significant corrections.

3 Discussion
We now look at the recent data for deflection angles and Einstein’s prediction in
the figure below.
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Figure 3.1: The deflection measurements for all 20 stars are plotted as a function
of radial distance from the Sun. The solid curve follows the theoretical value of
1.751 arcsec. The triangles mark the Astrometrica results and the squares mark
the MaxIm DL results. For comparison, the results from the 1973 experiment are
shown as open circles. | Source: Donald G. Bruns 7387 Celata Lane, San Diego,
CA 92129

Indeed close to one solar radius the measured deflection angle is above the
one predicted by Einstein in the order of 0.1arcsec, which could potentially be
modelled by the approach above by choosing a fitting n(r) or a fitting n0 in the
case of polytropes. That the order of derivation fits with small adjustments to n0
can be seen by expressing the results 2.42 and 2.43 in terms of arcseconds.
Moreover, it is possible to choose a completely new approach for n(r) to model
other dependencies

4 Application
The scope of application for this method is extremely broad. One can use it for
instance to model any kind of atmosphere, either the one of stars, planets or the
ones of any celestial body which is covered with a medium. This implies also
in particular the model of protoplanetary systems, where gaseous clouds result
in areas with different optical thicknesses, leading to different refraction indices
and therefore different refraction angles.
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